Research Article

What Sells on the Fake News Market? Examining the Impact of Contextualized Rhetorical Features on the Popularity of Fake Tweets

Ezgi Akar 1 * , Tugrul Cabir Hakyemez 2 , Aysun Bozanta 2 , Serkan Akar 3
More Detail
1 University of Wisconsin-Eau Claire, USA2 Ryerson University, CANADA3 University of the Incarnate Word, USA* Corresponding Author
Online Journal of Communication and Media Technologies, 12(1), January 2022, e202201, https://doi.org/10.30935/ojcmt/11278
Published: 15 October 2021
OPEN ACCESS   4271 Views   1754 Downloads
Download Full Text (PDF)

ABSTRACT

A fake news ecosystem is akin to a marketplace where content generators and users exchange content like sellers and buyers. The popularity of a product in this marketplace is influenced by rhetorical features (ethos, pathos, and logos), topic categories (hard news, soft news, and general news), and design motivations (political intent, fun, etc.). Therefore, the determinants of the popularity of fake news should be contextualized better to understand the spreading patterns. First, we obtained a sample from a fact-checking organization (n=439). Then, we categorized tweets based on their topics and design motivation by using biaxial content analysis. Next, we proposed a rhetorical framework to organize the tweet-related indicators to develop the content’s systematic characterization. Finally, we examined both the primary and interaction effects of topics, design motivations, and organized rhetorical features of tweets on popularity through a negative binomial regression. The main results revealed a positive relationship between logos-related features (i.e., the number of followers) and the popularity of the fake tweets. In addition, an exciting interaction effect indicated that fake tweets designed with political intent are nearly five times less retweeted when they contain hashtags. The research and practical implications and future directions were also discussed.

CITATION (APA)

Akar, E., Hakyemez, T. C., Bozanta, A., & Akar, S. (2022). What Sells on the Fake News Market? Examining the Impact of Contextualized Rhetorical Features on the Popularity of Fake Tweets. Online Journal of Communication and Media Technologies, 12(1), e202201. https://doi.org/10.30935/ojcmt/11278

REFERENCES

  1. Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211-236. https://doi.org/10.1257/jep.31.2.211
  2. Alrubaian, M., Al-Qurishi, M., Hassan, M. M., & Alamri, A. (2018). A credibility analysis system for assessing information on Twitter. IEEE Transactions on Dependable and Secure Computing, 15(4), 661-674. https://doi.org/10.1109/TDSC.2016.2602338
  3. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130-1132. https://doi.org/10.1126/science.aaa1160
  4. Barthel, M., Mitchell, A., & Holcomb, J. (2016). Many Americans believe fake news is sowing confusion. Pew Research Center: Journalism & Media. https://www.journalism.org/2016/12/15/many-americans-believe-fake-news-is-sowing-confusion/
  5. Bondielli, A., & Marcelloni, F. (2019). A survey on fake news and rumour detection techniques. Information Sciences, 497, 38-55. https://doi.org/10.1016/j.ins.2019.05.035
  6. Bovet, A., & Makse, H. A. (2019). Influence of fake news in Twitter during the 2016 U.S. presidential election. Nature Communications, 10. https://doi.org/10.1038/s41467-018-07761-2
  7. Burkhardt, J. M. (2017). Combating fake news in the digital age. American Library Association.
  8. Cameron, A. C., & Trivedi, P. K. (2013). Regression analysis of count data (2nd Ed.). Cambridge University Press.
  9. Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak. PLoS ONE, 5(11), e14118. https://doi.org/10.1371/journal.pone.0014118
  10. Cvijikj, I. P., & Michahelles, F. (2013). Online engagement factors on Facebook brand pages. Social Network Analysis and Mining, 3(4), 843-861. https://doi.org/10.1007/s13278-013-0098-8
  11. Dawkins, R. (2016). The selfish gene. Oxford University Press.
  12. Dochoff, C. H., & Hays, M. (2017). Fake furnishings: real and fake reporting on white house remodeling. http://publish.illinois.edu/dochoff2/files/2017/04/article-1-revised.pdf
  13. Elmurngi, E., & Gherbi, A. (2017). Detecting fake reviews through sentiment analysis using machine learning techniques. In S. Bhulai, & D. Kardaras (Eds), Proceedings of the Sixth International Conference on Data Analytics (DATA ANALYTICS 2017) (pp. 65-72). International Academy, Research, and Industry Association (IARIA).
  14. Enoch Pratt Free Library (n.d.). Fake news: How to spot it. https://www.prattlibrary.org/research/tools/index.aspx?cat=90&id=4735
  15. Flynn, D. J., Nyhan, B., & Reifler, J. (2017). The nature and origins of misperceptions: Understanding false and unsupported beliefs about politics. Political Psychology, 38(S1), 127-150. https://doi.org/10.1111/pops.12394
  16. Fritch, J. W., & Cromwell, R. L. (2002). Delving deeper into evaluation: exploring cognitive authority on the Internet. Reference Services Review, 30(3), 242-254.
  17. Grant, A. J. (2019). Ethos, pathos and logos: rhetorical fixes for an old problem: Fake news. In SITE 2019: Informing Science + Information Technology Education Conference (pp. 81-91). Informing Science Institute. https://doi.org/10.28945/4154
  18. Hamidian, S., & Diab, M. T. (2019). Rumor detection and classification for Twitter data. arXiv.org. https://arxiv.org/ftp/arxiv/papers/1912/1912.08926.pdf
  19. Hilligoss, B., & Rieh, S. Y. (2008). Developing a unifying framework of credibility assessment: Construct, heuristics, and interaction in context. Information Processing & Management, 44(4), 1467-1484. https://doi.org/10.1016/j.ipm.2007.10.001
  20. Indu, V., & Thampi, S. M. (2019). A nature-inspired approach based on Forest Fire model for modeling rumor propagation in social networks. Journal of Network and Computer Applications, 125, 28-41. https://doi.org/10.1016/j.jnca.2018.10.003
  21. Iosifidis, P., & Nicoli, N. (2020). The battle to end fake news: A qualitative content analysis of Facebook announcements on how it combats disinformation. International Communication Gazette, 82(1), 60-81. https://doi.org/10.1177/1748048519880729
  22. Ipsos Public Affairs. (2019). CIGI Ipsos global survey: Internet security & trust 2019 part 3: Social media, fake news & algorithms. https://www.cigionline.org/sites/default/files/documents/2019%20CIGI-Ipsos%20Global%20Survey%20-%20Part%203%20Social%20Media%2C%20Fake%20News%20%26%20Algorithms.pdf
  23. Jin, Z., Cao, J., Guo, H., Zhang, Y., & Luo, J. (2017). Multimodal fusion with recurrent neural networks for rumor detection on microblogs. Proceedings of the 25th ACM International Conference on Multimedia (pp. 795-816). Association for Computing Machinery (ACM).
  24. Karadağ, G. H., & Ayten, A. (2020). A comparative study of verification/fact-checking organzaitons in Turkey: dogrulukpayi.com and teyit.org. Motif Akademi Halkbilimi Dergisi, 13(29), 483-501. https://doi.org/10.12981/mahder.673262
  25. Katz, E., & Lazarsfeld, P. F. (1966). Personal influence: The part played by people in the flow of mass communications. Transaction Publishers.
  26. Kim, A., Moravec, P. L., & Dennis, A. R. (2019). Combating fake news on social media with source ratings: The effects of user and expert reputation ratings. Journal of Management Information Systems, 36(3), 931-968. https://doi.org/10.1080/07421222.2019.1628921
  27. Lazer, D. M., Baum, M., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news. Science, 359(6380), 1094-1096. https://doi.org/10.1126/science.aao2998
  28. Lee, D., Hosanagar, K., & Nair, H. S. (2013). The effect of advertising content on consumer engagement: Evidence from Facebook. http://www.researchgate.net/publication/257409065
  29. Lehman-Wilzig, S. N., & Seletzky, M. (2010). Hard news, soft news, ‘general’ news: The necessity and utility of an intermediate classification. Journalism, 11(1), 37-56. https://doi.org/10.1177/1464884909350642
  30. Levine, S., & Gambino, L. (2021, February 14). Donald Trump acquitted in second impeachment trial. The Guardian. https://www.theguardian.com/us-news/2021/feb/13/donald-trump-acquitted-impeachment-trial
  31. Lohmann, K., Pyka, S. S., & Zanger, C. (2017). The effects of smileys on receivers’ emotions. Journal of Consumer Marketing, 34(7), 489-495. https://doi.org/10.1108/JCM-02-2017-2120
  32. Ma, J., Gao, W., Wei, Z., Lu, Y., & Wong, K. F. (2015). Detect rumors using time series of social context information on microblogging websites. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (pp. 1751-1754). https://doi.org/10.1145/2806416.2806607
  33. Marcella, R., Baxter, G., & Walicka, A. (2019). User engagement with political “facts” in the context of the fake news phenomenon: an exploration of information behaviour. Journal of Documentation, 75(3), 1082-1099. https://doi.org/10.1108/JD-11-2018-0180
  34. Marwick, A. E. (2018). Why do people share fake news? A sociotechnical model of media effects. Georgetown Law Technology Review, 2(2), 474-512.
  35. McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/B.M.2012.031 PMID:23092060
  36. Meel, P., & Vishwakarma, D. K. (2019). Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, 153. https://doi.org/10.1016/j.eswa.2019.112986
  37. Menninghaus, W, Bohrn, I. C., Knoop, C. A., Kotz, S. A., Schlotz, W., & Jacobs, A. M. (2016). Rhetorical features facilitate prosodic processing while handicapping ease of semantic comprehension. Cognition, 143, 48-60. https://doi.org/10.1016/j.cognition.2015.05.026
  38. Mercier, H. 2020. Fake news in the time of coronavirus: How big is the threat? The Guardian. https://www.theguardian.com/commentisfree/2020/mar/30/fake-news-coronavirus-false-information
  39. Mihailidis, P., & Viotty, S. (2017). Spreadable spectacle in digital culture: Civic expression, fake news, and the role of media literacies in “post-fact” society. American Behavioral Scientist, 61(4), 441-454. https://doi.org/10.1177/0002764217701217
  40. Mitchell, A., Gottfried, J., Stocking, G., Walker, M., & Fedeli, S. (2019). Many Americans say made-up news is a critical problem that needs to be fixed. Pew Research Center Journalism & Media. https://www.journalism.org/2019/06/05/many-americans-say-made-up-news-is-a-critical-problem-that-needs-to-be-fixed/
  41. Mitchell, A., Simmons, K., Matsa, K. E., & Silver, L. (2018). Publics globally want unbiased news coverage, but are divided on whether their news media deliver. Pew Research Center Global Attitudes & Trends. https://www.pewresearch.org/global/2018/01/11/publics-globally-want-unbiased-news-coverage-but-are-divided-on-whether-their-news-media-deliver/
  42. Murungi, D., Purao, S., & Yates, D. (2018). Beyond facts: a new spin on fake news in the age of social media. Twenty-fourth Americas Conference on Information Systems (pp. 1-10). Association for Information Systems (AIS).
  43. Nielsen, R. K., & Graves, L. (2017). “News you don’t believe”: Audience perspectives on fake news. Reuters Institute for the Study of Journalism. https://reutersinstitute.politics.ox.ac.uk/our-research/news-you-dont-believe-audience-perspectives-fake-news
  44. Nyhan, B., & Reifler, J. (2010). When corrections fail: The persistence of political misperceptions. Political Behavior, 32(2), 303-330. https://doi.org/10.1007/s11109-010-9112-2
  45. Papanastasiou, Y. (2020). Fake news propagation and detection: A sequential model. Management Science, 66(5), 1826-1846. https://doi.org/10.1287/mnsc.2019.3295
  46. Pennycook, G., Bear, A., Collins, E. T., & Rand, D. G. (2020). The implied truth effect: Attaching warnings to a subset of fake news headlines increases perceived accuracy of headlines without warnings. Management Science, 66(11), 4944-4957. https://doi.org/10.1287/mnsc.2019.3478
  47. Rapp, C. (2002). Aristotle’s rhetoric. The Stanford Encyclopedia of Philosophy (Spring 2010 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/archives/spr2010/entries/aristotle-rhetoric
  48. Rochlin, N. (2017). Fake news: Belief in post-truth. Library Hi Tech, 35(2), 386-392. https://doi.org/10.1108/LHT-03-2017-0062
  49. Roth, Y., & Pickles, N. (2020). Updating our approach to misleading information. https://blog.twitter.com/en_us/topics/product/2020/updating-our-approach-to-misleading-information
  50. Silverman, B. (2017). Facebook says its fact checking program helps reduce the spread of a fake story by 80%. Buzzfeed News. https://www.buzzfeednews.com/article/craigsilverman/facebook-just-shared-the-first-data-about-how-effective-its
  51. Spohr, D. (2017). Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Business Information Review, 34(3), 150-160. https://doi.org/10.1177/0266382117722446
  52. Tambini, D. (2017). Fake news: Public policy responses. Media Policy Brief 20. London School of Economics and Political Science. https://core.ac.uk/download/pdf/80787497.pdf
  53. teyit. Methodology: teyit. https://teyit.org/methodology/
  54. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544-2558. https://doi.org/10.1002/asi.21416
  55. Torres, R., Gerhart, N., & Negahban, A. (2018). Epistemology in the era of fake news: An exploration of information verification behaviors among social networking site users. ACM SIGMIS Database, 49(3), 78-97. https://doi.org/10.1145/3242734.3242740
  56. Ünal, R., & Çiçeklioğlu, A. Ş. (2019). The function and importance of fact-checking organizations in the era of fake news: teyit.org, an example from Turkey. Media Studies, 10(19), 140-160. https://doi.org/10.20901/ms.10.19.8
  57. Vasu, N., Ang, B.,,Teo, T. A., Jayakumar, S., Raizal, M., & Ahuja, J. (2018). Fake news: national security in the post-truth era. Policy Report. Global Resilience Institute at Northeastern University. https://www.rsis.edu.sg/wp-content/uploads/2018/01/PR180313_Fake-News_WEB.pdf
  58. Ver Hoef, J. M., & Boveng, P. L. (2007). Quasi‐Poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology, 88(11), 2766-2772. https://doi.org/10.1890/07-0043.1
  59. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  60. Vural, A. G., Cambazoglu, B. B., Senkul, P., & Tokgoz, Z. O. (2013). A framework for sentiment analysis in Turkish: Application to polarity detection of movie reviews in Turkish. In E. Gelenbe, & R. Lent (Eds), Computer and information sciences III. Springer. https://doi.org/10.1007/978-1-4471-4594-3_45
  61. Wardle, C., & Derakhshan, H. (2017). Information disorder: Toward an interdisciplinary framework for research and policy making. Report Ref. 162317GBR. Council of Europe.
  62. West, D. (2021). The role of misinformation in Trump’s insurrection. Brookings. https://www.brookings.edu/blog/techtank/2021/01/11/the-role-of-misinformation-in-trumps-insurrection/
  63. Wise, A. (2021). Acting capitol police chief promises ‘significant’ changes following deadly riot. NPR. https://www.npr.org/sections/insurrection-at-the-capitol/2021/02/05/964616916/acting-capitol-police-chief-promises-significant-changes-following-deadly-riot
  64. Yang, Y., Zheng, L., Zhang, J., Cui, Q., Li, Z., & Yu, P. S. (2018). TI-CNN: Convolutional neural networks for fake news detection. arXiv. https://arxiv.org/abs/1806.00749
  65. Zannettou, S., Sirivianos, M., Blackburn, J., & Kourtellis, N. (2019). The web of false information: Rumors, fake news, hoaxes, clickbait, and various other shenanigans. Journal of Data and Information Quality, 11(3), 1-37. https://doi.org/10.1145/3309699