Research Article

The influence of age and gender on social TV acceptance

Mohammed Habes 1 , Mokhtar Elareshi 2 * , Hatem Alsridi 3 , Abdulkrim Ziani 4 , Mahmoud Elbasir 5
More Detail
1 Department of Radio & TV, Yarmouk University, Irbid, JORDAN2 College of Communication, University of Sharjah, Sharjah, UNITED ARAB EMIRATES3 Department of Media, Tourism and Arts, University of Bahrain, Zallaq, BAHRAIN4 College of Communication and Media, Al Ain University, Abu Dhabi, UNITED ARAB EMIRATES5 School of Computer Science and Informatics, De Montfort University, Leicester, UNITED KINGDOM* Corresponding Author
Online Journal of Communication and Media Technologies, 15(2), April 2025, e202514, https://doi.org/10.30935/ojcmt/16091
Published Online: 08 March 2025, Published: 01 April 2025
OPEN ACCESS   6422 Views   1532 Downloads
Download Full Text (PDF)

ABSTRACT

Social TV refers to the integration of social media platforms with traditional TV viewing, allowing users to interact with content and other viewers in real time. This study examines the acceptance of social TV among Jordanians, focusing on how demographic factors such as age and gender influence this acceptance. A total of 450 social TV users from three Jordanian cities were conducted and analyzed (using PLS-SEM). The results revealed that the results remained consistent with the idea that social TV is acceptable, with a significant effect on the respondents, e.g., they were of active interest in its integration. Gender and age had a significant indirect effect on the acceptance of social TV. This study highlighted that social media and social TV acceptance are closely intertwined.

CITATION (APA)

Habes, M., Elareshi, M., Alsridi, H., Ziani, A., & Elbasir, M. (2025). The influence of age and gender on social TV acceptance. Online Journal of Communication and Media Technologies, 15(2), e202514. https://doi.org/10.30935/ojcmt/16091

REFERENCES

  1. Abd Majid, F., & Mohd Shamsudin, N. (2019). Identifying factors affecting acceptance of virtual reality in classrooms based on technology acceptance model (TAM). Asian Journal of University Education, 15(2), 52–60. https://doi.org/10.24191/ajue.v15i2.7556
  2. Alarcón, D., & Sánchez, J. A. (2015). Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for average variance extracted (AVE), composite reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT). STATA. https://www.stata.com/meeting/spain15/abstracts/materials/spain15_alarcon.pdf
  3. Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of Zoom application in language course based on the technology acceptance model (TAM). Journal of Psycholinguistic Research, 50, 883–900. https://doi.org/10.1007/s10936-020-09752-1
  4. Ali, W. (2020). Online and remote learning in higher education institutes: A necessity in light of COVID-19 pandemic. Higher Education Studies, 10(3), 16–25. https://doi.org/10.5539/HES.V10N3P16
  5. Alonzo, D., & Popescu, M. (2021). Utilizing social media platforms to promote mental health awareness and help seeking in underserved communities during the COVID-19 pandemic, 10(1), Article 156. https://doi.org/10.4103/jehp.jehp_21_21
  6. Barker, C. (2018). Facebook, Twitter, and the pivot to original content: From social TV to TV on social. Transformative Works and Cultures, 26. https://doi.org/10.3983/TWC.2018.1291
  7. Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), Article 588. https://doi.org/10.1037/0033-2909.88.3.588
  8. Boardman, R., Henninger, C. E., & Zhu, A. (2020). Augmented reality and virtual reality: New drivers for fashion retail? In G. Vignali, L. F. Reid, D. Ryding, & C. E. Henninger (Eds.), Technology-driven sustainability: Innovation in the fashion supply chain (pp. 155–172). Springer. https://doi.org/10.1007/978-3-030-15483-7_9
  9. Bolliger, D., & Inan, F. (2012). Development and validation of the online student connectedness survey (OSCS). International Review of Research in Open and Distributed Learning, 13(3), Article 65. https://doi.org/10.19173/irrodl.v13i3.1171
  10. Cesar, P., & Geerts, D. (2011). Understanding social TV: A survey. In Proceedings of the Networked and Electronic Media Summit (pp. 94–99).
  11. Chanvisatlak, P. (2019). Social TV: Communication from television to Facebook (Workpoint TV and Thairath TV). National Institute of Development Administration.
  12. Chon, M. G., & Park, H. (2020). Social media activism in the digital age: Testing an integrative model of activism on contentious issues. Journalism and Mass Communication Quarterly, 97(1), 72–97. https://doi.org/10.1177/1077699019835896
  13. Djerf-Pierre, M., Lindgren, M., & Budinski, M. (2019). The role of journalism on YouTube: Audience engagement with “superbug” reporting. Media and Communication, 7(1), 235–247. https://doi.org/10.17645/mac.v7i1.1758
  14. Elareshi, M., Habes, M., Al-Tahat, K., Ziani, A., & Salloum, S. A. (2022). Factors affecting social TV acceptance among Generation Z in Jordan. Acta Psychologica, 230, Article 103730. https://doi.org/10.1016/J.ACTPSY.2022.103730
  15. Enli, G., & Syvertsen, T. (2016). The end of television-again! How TV is still influenced by cultural factors in the age of digital intermediaries. Media and Communication, 4(3). https://doi.org/10.17645/mac.v4i3.547
  16. Etikan, I., Abubakar Musa, S., & Sunusi Alkassim, R. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11
  17. Evans, H. K., & Clark, J. H. (2016). “You tweet like a girl!”: How female candidates campaign on Twitter. American Politics Research, 44(2), 326–352. https://doi.org/10.1177/1532673X15597747
  18. Farooq, Q., Shafique, N., Khurshid, M. M., & Ahmad, N. (2015). Impact of comic factor in TV ads on buying behavior of university students. International Letters of Social and Humanistic Sciences, 49, 12–20. https://doi.org/10.18052/www.scipress.com/ILSHS.49.12
  19. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
  20. Fossen, B. L., & Schweidel, D. A. (2019). Social TV, advertising, and sales: Are social shows good for advertisers? Marketing Science, 38(2), 274–295. https://doi.org/10.1287/mksc.2018.1139
  21. Fowler, D., Hodgekins, J., Garety, P., Freeman, D., Kuipers, E., Dunn, G., Smith, B., & Bebbington, P. E. (2012). Negative cognition, depressed mood, and paranoia: A longitudinal pathway analysis using structural equation modeling. Schizophrenia Bulletin, 38(5), 1063–1073. https://doi.org/10.1093/schbul/sbr019
  22. Fuller, J. (2021). How internet TV works. HowStuffWorks. https://electronics.howstuffworks.com/internet-tv.htm
  23. Gómez-Galán, J., Ángel Martínez-López, J., Lázaro-Pérez, C., Luis, J., & Sánchez-Serrano, S. (2020). Social networks consumption and addiction in college students during the COVID-19 pandemic: Educational approach to responsible use. Sustainability, 12(18), Article 7737. https://doi.org/10.3390/su12187737
  24. Gomillion, S., Gabriel, S., Kawakami, K., & Young, A. F. (2017). Let’s stay home and watch TV: The benefits of shared media use for close relationships. Journal of Social and Personal Relationships, 34(6), 855–874. https://doi.org/10.1177/0265407516660388
  25. Gui, M., & Stanca, L. (2009). Television viewing, satisfaction and happiness: Facts and fiction. https://boa.unimib.it/retrieve/e39773b1-7a0f-35a3-e053-3a05fe0aac26/Television_Viewing%2C_Satisfaction_and_Happiness_Facts_and_Fiction.pdf
  26. Guo, M. (2019). Social television viewing with second screen platforms: Antecedents and consequences. Media and Communication, 7(1), 139–152. https://doi.org/10.17645/mac.v7i1.1745
  27. Habes, M. (2019). The influence of personal motivation on using social TV: A Uses and Gratifications approach. International Journal of Information Technology and Language Studies (IJITLS), 3(1), 32–39.
  28. Habes, M., Elareshi, M., Almansoori, A., Ziani, A., & Alsridi, H. (2022). Smart interaction and social TV used by Jordanian University students. Technology in Society, 71, Article 102110. https://doi.org/10.1016/J.TECHSOC.2022.102110
  29. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on partial least squares structural equation modeling (PLS-SEM). SAGE.
  30. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
  31. Hamid, M. R. A., Sami, W., & Sidek, M. H. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics: Conference Series, 890, Article 12163. https://doi.org/10.1088/1742-6596/890/1/012163
  32. Harboe, G. (2010). In search of social television. In S. Dasgupta (Ed.), Social computing: Concepts, methodologies, tools, and applications (pp. 719–731). IGI Global. https://doi.org/10.4018/978-1-60566-984-7.ch046
  33. Hosami, B. (2019). Digital gender divide and empowering women in the digital age: A critical approach in Iranian society [Master’s thesis, Linnaeus University, Växjö, Sweden].
  34. Hossain, M., Kim, M., & Jahan, N. (2019). Can “liking” behavior lead to usage intention on Facebook? uses and gratification theory perspective. Sustainability, 11(4), Article 1166. https://doi.org/10.3390/su11041166
  35. Ipsos. (2020). Mapping of media information literacy in Jordan. https://en.unesco.org/sites/default/files/mil_mapping_0.pdf
  36. Jacobson, J., Gruzd, A., & Hernández-García, Á. (2020). Social media marketing: Who is watching the watchers? Journal of Retailing and Consumer Services, 53, Article 101774. https://doi.org/10.1016/J.JRETCONSER.2019.03.001
  37. Kelcey, B., Cox, K., & Dong, N. (2021). Croon’s bias-corrected factor score path analysis for small- to moderate-sample multilevel structural equation models. Organizational Research Methods, 24(1), 55–77. https://doi.org/10.1177/1094428119879758
  38. Kemp, S. (2021). Digital 2021 Jordan. DataReportal–Global Digital Insights. https://datareportal.com/reports/digital-2021-jordan
  39. Kemp, S. (2023). Digital 2023: Jordan. DataReportal–Global Digital Insights. https://datareportal.com/reports/digital-2023-jordan
  40. Kim, J. (2019). Enjoying social TV re-discovering the social process and big data research [Unpublished PhD thesis]. Universitat Autònoma de Barcelona.
  41. Kim, J., & Kelly Merrill, J. (2022). Dynamic roles of social presence and individual differences in social TV platforms. Convergence: The International Journal of Research into New Media Technologies, 28(1), 291–305. https://doi.org/10.1177/13548565211057515
  42. Kim, J., Merrill, K., & Collins, C. (2020). Touchdown together: Social TV viewing and social presence in a physical co-viewing context. The Social Science Journal, 61(3), 577–591. https://doi.org/10.1080/03623319.2020.1833149
  43. Kim, J., Merrill, K., Collins, C., & Yang, H. (2021). Social TV viewing during the COVID-19 lockdown: The mediating role of social presence. Technology in Society Journal, 67, Article 101733. https://doi.org/10.1016/j.techsoc.2021.101733
  44. Kim, J., Song, H., & Lee, S. (2018). Extrovert and lonely individuals’ social TV viewing experiences: A mediating and moderating role of social presence. Mass Communication and Society, 21(1), 50–70. https://doi.org/10.1080/15205436.2017.1350715
  45. Lim, J. S., Hwang, Y., Kim, S., & Biocca, F. A. (2015). How social media engagement leads to sports channel loyalty: Mediating roles of social presence and channel commitment. Computers in Human Behavior, 46, 158–167. https://doi.org/10.1016/j.chb.2015.01.013
  46. Lin, C. H., Lin, H. F., Yeo, B., & Lin, P. C. (2021). The influence of social TV multitasking behavior on the effectiveness of cross-media advertising. International Journal of Communication, 15, 1570–1594.
  47. Lin, J. S., Sung, Y., & Chen, K. J. (2016). Social television: Examining the antecedents and consequences of connected TV viewing. Computers in Human Behavior, 58, 171–178. https://doi.org/10.1016/J.CHB.2015.12.025
  48. Lin, T. T. C., & Chiang, Y.-H. (2019). Bridging social capital matters to social TV viewing: Investigating the impact of social constructs on program loyalty. Telematics and Informatics, 43, Article 101236. https://doi.org/10.1016/j.tele.2019.05.006
  49. Madhubhashini, G. T. (2021). The role of television as an educational medium in empowering rural students in Sri Lanka during COVID-19 pandemic. International Online Journal of Language, Communication, and Humanities, 4(2), 89–100.
  50. Mcfadzean, E., & Mckenzie, J. (2001). Facilitating virtual learning groups: A practical approach. Journal of Management Development, 20(6), 470–494. https://doi.org/10.1108/02621710110399774
  51. Merceron, A., & Atkin, D. (2020). Examining the role of individual differences & motivation in predicting social TV viewing behaviors among young adults in the U.S. The Journal of Social Media in Society, 9(1), 253–274.
  52. Moghavvemi, S., Sharabati, M., Paramanathan, T., & Rahin, N. M. (2017). The impact of perceived enjoyment, perceived reciprocal benefits and knowledge power on students’ knowledge sharing through Facebook. The International Journal of Management Education, 15(1), 1–12. https://doi.org/10.1016/j.ijme.2016.11.002
  53. Nachrin, T. (2019). Social media use by the Rohingya refugees in Bangladesh: A uses and gratification approach. International Journal of Social Science Studies, 8(1), Article 1. https://doi.org/10.11114/ijsss.v8i1.4551
  54. Odunaiya, O., Agoyi, M., & Osemeahon, O. S. (2020). Social TV engagement for increasing and sustaining social TV viewers. Sustainability, 12(12), Article 4906. https://doi.org/10.3390/SU12124906
  55. Özay Köse, E., & Gül, Ş. (2018). The substance addiction awareness scale: A study of the validity and reliability. Inonu University Journal of the Faculty of Education, 19(3), 41–56. https://doi.org/10.17679/inuefd.327521
  56. Paftalika, R. B., & Hananto, A. (2018). The uses and gratifications theory, subjective norm, and gender in influencing students’ continuance participation intention in LinkedIn. Binus Business Review, 9(3), 207–217. https://doi.org/10.21512/bbr.v9i3.4722
  57. Pelletier, M. J., Krallman, A., Adams, F. G., & Hancock, T. (2020). One size doesn’t fit all: A uses and gratifications analysis of social media platforms. Journal of Research in Interactive Marketing, 14(2), 269–284. https://doi.org/10.1108/JRIM-10-2019-0159
  58. Permatasari, A., & Kuswadi, E. (2017). The impact of social media on consumers’ purchase intention: A study of ecommerce sites in Jakarta, Indonesia. Review of Integrative Business and Economics Research, 6(1), 321–335.
  59. Pynta, P., Seixas, S. A. S., Nield, G. E., Hier, J., Millward, E., & Silberstein, R. B. (2014). The power of social television: Can social media build viewer engagement? A new approach to brain imaging of viewer immersion. Journal of Advertising Research, 54(1), 71–80. https://doi.org/10.2501/JAR-54-1-071-080
  60. Resende, G., Melo, P., Reis, J. C. S., Vasconcelos, M., Almeida, J. M., & Benevenuto, F. (2019). Analyzing textual (mis)information shared in WhatsApp groups. In Proceedings of the 10th ACM Conference on Web Science (pp. 225–234). ACM. https://doi.org/10.1145/3292522.3326029
  61. Saling, L. L., Mallal, D., Scholer, F., Skelton, R., & Spina, D. (2021). No one is immune to misinformation: An investigation of misinformation sharing by subscribers to a fact-checking newsletter. PLoS ONE, 16(8), Article e0255702. https://doi.org/10.1371/journal.pone.0255702
  62. Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In C. Homburg, M. Klarmann, & A. E. Vomberg (Eds.), Handbook of market research (pp. 587–632). Springer. https://doi.org/10.1007/978-3-319-05542-8_15-2
  63. Selva, D. (2016). Social television: Audience and political engagement. Television & New Media, 17(2), 159–173. https://doi.org/10.1177/1527476415616192
  64. Shao, D., & Lee, I. J. (2020). Acceptance and influencing factors of social virtual reality in the urban elderly. Sustainability, 12(22), Article 9345. https://doi.org/10.3390/su12229345
  65. Sheldon, P., Antony, M. G., & Ware, L. J. (2021). Baby Boomers’ use of Facebook and Instagram: Uses and gratifications theory and contextual age indicators. Heliyon, 7(4), Article e06670. https://doi.org/10.1016/j.heliyon.2021.e06670
  66. Silverblatt, A. (2004). Media as social institution. American Behavioral Scientist, 48(1), 35–41. https://doi.org/10.1177/0002764204267249
  67. Song, H., Kim, J., & Choi, Y. (2019). Social TV viewing: The effect of virtual co-viewers and the role of social presence. Journal of Digital Contents Society, 20(8), 1543–1552. https://doi.org/10.9728/dcs.2019.20.8.1543
  68. Statcounter. (2021). Social media stats Jordan. Statcounter Global Stats. https://gs.statcounter.com/social-media-stats/all/jordan
  69. Stollfuß, S. (2018). Between television, web and social media: On social TV, About: Kate and participatory production in German Public Television. Participations: Journal of Audience & Reception Studies, 15(1), 36–59.
  70. Topf, J. M., & Williams, P. N. (2021). COVID-19, social media, and the role of the public physician. Blood Purification, 50(4–5), 595–601. https://doi.org/10.1159/000512707
  71. Trisha, T. C. L. (2019). Multiscreen social TV system: A mixed method understanding of users’ attitudes and adoption intention. International Journal of Human-Computer Interaction, 35(2), 99–108. https://doi.org/10.1080/10447318.2018.1436115
  72. Vázquez-Herrero, J., Negreira-Rey, M.-C., & Rodríguez-Vázquez, A.-I. (2021). Intersections between TikTok and TV: Channels and programmes thinking outside the box. Journal Journalism and Media, 2(1), 1–13. https://doi.org/10.3390/journalmedia2010001
  73. Winter, S., Krämer, N. C., Benninghoff, B., & Gallus, C. (2018). Shared entertainment, shared opinions: The influence of social TV comments on the evaluation of talent shows. Journal of Broadcasting & Electronic Media, 62(1), 21–37. https://doi.org/10.1080/08838151.2017.1402903
  74. Wohn, D. Y., & Na, E. K. (2011). Tweeting about TV: Sharing television viewing experiences via social media message streams. First Monday, 16(3). https://doi.org/10.5210/fm.v16i3.3368
  75. Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913–934. https://doi.org/10.1177/0013164413495237
  76. Xia, Y. X., & Chae, S. W. (2021). Sustainable development of online group-buying websites: An integrated perspective of ECM and relationship marketing. Sustainability, 13(4), Article 2366. https://doi.org/10.3390/su13042366
  77. Zalani, C. (2020). Key YouTube stats 2021 for creators and brands. Elite Content Marketer. https://elitecontentmarketer.com/youtube-statistics/