Research Article

Social media users trust in their most frequently used social media site

Daniel M. Eveleth 1 * , Robert W. Stone 1 , Lori J. Baker-Eveleth 1
More Detail
1 University of Idaho, Moscow, ID, USA* Corresponding Author
Online Journal of Communication and Media Technologies, 14(4), October 2024, e202445, https://doi.org/10.30935/ojcmt/14796
Published Online: 11 July 2024, Published: 01 October 2024
OPEN ACCESS   2361 Views   1570 Downloads
Download Full Text (PDF)

ABSTRACT

As users increasingly turn to social media as a source for news and other information, greater understanding is needed about the factors that affect their perceptions of the social media sites, where they seek information. The purpose of this paper is to examine the effect of perceived social media benefits and knowledge of privacy-protection practices on users’ trust in information on social media. Results indicate that users’ trust is, in part, a function of their perceptions of the benefits of social media and their knowledge of privacy-protection practices. Perceived benefits and knowledge of privacy practices each positively influenced trust. In addition, privacy invasion experiences positively influenced risk aversion and privacy concerns, which in turn had positive influences on privacy-protection knowledge. Interestingly, this result shows that users’ privacy concerns and risk aversion have a positive effect on trust, indirectly, through users’ efforts to gain greater control of their privacy by increasing their knowledge about privacy protection practices.

CITATION (APA)

Eveleth, D. M., Stone, R. W., & Baker-Eveleth, L. J. (2024). Social media users trust in their most frequently used social media site. Online Journal of Communication and Media Technologies, 14(4), e202445. https://doi.org/10.30935/ojcmt/14796

REFERENCES

  1. Abdul-Rahim, R., Bohari, S. A., Aman, A., & Awang, Z. (2022). Benefit–risk perceptions of FinTech adoption for sustainability from bank consumers’ perspective: The moderating role of fear of COVID-19. Sustainability, 14(14), Article 8357. https://doi.org/10.3390/su14148357
  2. Adhikari, K., & Panda, R. K. (2018). Users’ information privacy concerns and privacy protection behaviors in social networks. Journal of Global Marketing, 31(2), 96-110. https://doi.org/10.1080/08911762.2017.1412552
  3. Adjin-Tettey, T. D., & Amenaghawon, F. (2024). Countering the threats of dis/misinformation: Fact-checking practices of students of two universities in West Africa. Online Journal of Communication and Media Technologies, 14(1), Article e202409. https://doi.org/10.30935/ojcmt/14134
  4. Ahmadi, M., & Wohn, D. Y. (2018). The antecedents of incidental news exposure on social media. Social Media + Society, 4(2). https://doi.org/10.1177/2056305118772827
  5. Ahmed, S., & Masood, M. (2024). Assessing the effects of privacy concerns on social media-driven political discussions and participation: A comparative study of Asian and Western contexts. Social Science Computer Review. https://doi.org/10.1177/08944393241252026
  6. Alfred, J. J. R., & Wong, S. P. (2022). The relationship between the perception of social media credibility and political engagement in social media among Generation Z. Journal of Communication, Language and Culture, 2(2), 18-33. https://doi.org/10.33093/jclc.2022.2.2.2
  7. Alhakami, A. S., & Slovic, P. (1994). A psychological study of the inverse relationship between perceived risk and perceived benefit. Risk Analysis, 14(6), 1085-1096. https://doi.org/10.1111/j.1539-6924.1994.tb00080.x
  8. Alkis, A., & Kose, T. (2022). Privacy concerns in consumer e-commerce activities and response to social media advertising: Empirical evidence from Europe. Computers in Human Behavior, 137, Article 107412. https://doi.org/10.1016/j.chb.2022.107412
  9. Amuta, A. O., Jacobs, W., Barry, A. E., Popoola, O. A., & Crosslin, K. (2016). Gender differences in type 2 diabetes risk perception, attitude, and protective health behaviors: A study of overweight and obese college students. American Journal of Health Education, 47(5), 315-323. https://doi.org/10.1080/19325037.2016.1203836
  10. Auxier, B., Anderson, M., Gramlich, J., Schaeffer, K., & Vogels, E. A. (2021). Social media fact sheet. Pew Research Center. https://www.pewresearch.org/internet/fact-sheet/social-media/
  11. Babu, P. V., Agrawal, G., Mohideen, A. S., & Anand, B. (2024). Users’ perceived risks and challenges of FinTech adoption in India: An empirical investigation. Journal of Informatics Education and Research, 4(1). https://doi.org/10.52783/jier.v4i1.524
  12. Baker-Eveleth, L., Stone, R., & Eveleth, D. (2022). Understanding social media users’ privacy-protection behaviors. Information & Computer Security, 30(3), 324-345. https://doi.org/10.1108/ICS-07-2021-0099
  13. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
  14. Bandura, A. (1986). Social foundation of thought and action: A social cognitive theory. Prentice-Hall.
  15. Bandura, A. (2005). The evolution of social cognitive theory. In K. G. Smith, & M. A. Hitt (Eds.), Great minds in management (pp. 9-35). Oxford University Press. https://doi.org/10.1093/oso/9780199276813.003.0002
  16. Bansal, G., Zahedi, F. M., & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management, 53(1), 1-21. https://doi.org/10.1016/j.im.2015.08.001
  17. Baptista, J. P., & Gradim, A. (2020). Understanding fake news consumption: A review. Social Sciences, 9(10), Article 185. https://doi.org/10.3390/socsci9100185
  18. Baruh, L., Secinti, E., & Cemalcilar, Z. (2017). Online privacy concerns and privacy management: A meta-analytical review. Journal of Communication, 67(1), 26-53. https://doi.org/10.1111/jcom.12276
  19. Bates, R., & Khasawneh, S. (2007). Self-efficacy and college students’ perceptions and use of online learning systems. Computers in Human Behavior, 23(1), 175-191. https://doi.org/10.1016/j.chb.2004.04.004
  20. Boerman, S. C., Strycharz, J., & Smit, E. G. (2024). How can we increase privacy protection behavior? A longitudinal experiment testing three intervention strategies. Communication Research, 51(2), 115-145. https://doi.org/10.1177/00936502231177786
  21. Bright, L. F., Logan, K., & Lim, H. S. (2022). Social media fatigue and privacy: An exploration of antecedents to consumers’ concerns regarding the security of their personal information on social media platforms. Journal of Interactive Advertising, 22(2), 125-140. https://doi.org/10.1080/15252019.2022.2051097
  22. Chen, M., Huang, X., & Qi, X. (2024). To disclose or to protect? Predicting social media users’ behavioral intention toward privacy. Industrial Management & Data Systems, 124(6), 2091-2119. https://doi.org/10.1108/IMDS-05-2023-0337
  23. Cheng, X., Fu, S., & de Vreede, G.-J. (2017). Understanding trust influencing factors in social media communication: A qualitative study. International Journal of Information Management, 37(2), 25-35. https://doi.org/10.1016/j.ijinfomgt.2016.11.009
  24. Chung, K.-C., Chen, C.-H., Tsai, H.-H., & Chuang, Y.-H. (2021). Social media privacy management strategies: A SEM analysis of user privacy behaviors. Computer Communications, 174, 122-130. https://doi.org/10.1016/j.comcom.2021.04.012
  25. Cui, M., Ding, F., & Cai, K. (2024). The influence of self-efficacy of college students in privacy protection and behavior in social networking context. Scientific and Social Research, 6(3), 126-143. https://doi.org/10.26689/ssr.v6i3.6445
  26. Degirmenci, K. (2020). Mobile users’ information privacy concerns and the role of app permission requests. International Journal of Information Management, 50, 261-272. https://doi.org/10.1016/j.ijinfomgt.2019.05.010
  27. Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61-80. https://doi.org/10.1287/isre.1060.0080
  28. Dwyer, C., Hiltz, S., & Passerini, K. (2007). Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace. In Proceedings of the AMCIS 2007.
  29. Eckel, C. C., El-Gamal, M. A., & Wilson, R. K. (2009). Risk loving after the storm: A Bayesian-network study of Hurricane Katrina evacuees. Journal of Economic Behavior & Organization, 69(2), 110-124. https://doi.org/10.1016/j.jebo.2007.08.012
  30. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
  31. Feldkamp, J. (2021). The rise of TikTok: The evolution of a social media platform during COVID-19. In C. Hovestadt, J. Recker, J. Richter, & K. Werder (Eds.), Digital responses to COVID-19: Digital innovation, transformation, and entrepreneurship during pandemic outbreaks (pp. 73-85). Springer. https://doi.org/10.1007/978-3-030-66611-8_6
  32. Gainous, J., Abbott, J. P., & Wagner, K. M. (2019). Traditional versus internet media in a restricted information environment: How trust in the medium matters. Political Behavior, 41, 401-422. https://doi.org/10.1007/s11109-018-9456-6
  33. George, J. F. (2024). Discovering why people believe disinformation about healthcare. PLoS ONE, 19(3), Article e0300497. https://doi.org/10.1371/journal.pone.0300497
  34. Gupta, S., & Dey, D. K. (2024). Risk perception and adoption of digital innovation in mobile stock trading. Journal of Consumer Behavior, 23(2), 639-654. https://doi.org/10.1002/cb.2225
  35. Hair, J., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate data analysis: With readings. MacMillan Publishing Company.
  36. Hajli, N., Sims, J., Zadeh, A. H., & Richard, M.-O. (2017). A social commerce investigation of the role of trust in a social networking site on purchase intentions. Journal of Business Research, 71, 133-141. https://doi.org/10.1016/j.jbusres.2016.10.004
  37. He, T.-S., & Hong, F. (2018). Risk breeds risk aversion. Experimental Economics, 21, 815-835. https://doi.org/10.1007/s10683-017-9553-0
  38. Herrando, C., Jimenez-Martinez, J., & Martin-De Hoyos, M. (2019). Tell me your age and I tell you what you trust: The moderating effect of generations. Internet Research, 29(4), 799-817. https://doi.org/10.1108/IntR-03-2017-0135
  39. Hong, W., Chan, F. K., & Thong, J. Y. (2019). Drivers and inhibitors of internet privacy concern: A multidimensional development theory perspective. Journal of Business Ethics, 168, 539-564. https://doi.org/10.1007/s10551-019-04237-1
  40. Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.
  41. Horst, M., Kuttschreuter, M., & Gutteling, J. M. (2007). Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands. Computers in Human Behavior, 23(4), 1838-1852. https://doi.org/10.1016/j.chb.2005.11.003
  42. Hsu, H.-M. (2016). Does privacy threat matter in mobile health service? From health belief model perspective [Paper presentation]. The PACIS 2016. https://aisel.aisnet.org/pacis2016/65/
  43. Hwang, Y. (2005). Investigating enterprise systems adoption: Uncertainty avoidance, intrinsic motivation, and the technology acceptance model. European Journal of Information Systems, 14(2), 150-161. https://doi.org/10.1057/palgrave.ejis.3000532
  44. Igbaria, M., & Greenhaus, J. H. (1992). Determinants of MIS employees’ turnover intentions: A structural equation model. Communications of ACM, 35(2), 34-49. https://doi.org/10.1145/129630.129631
  45. Ioannou, A., Tussyadiah, I., & Marshan, A. (2021). Dispositional mindfulness as an antecedent of privacy concerns: A protection motivation theory perspective. Psychology & Marketing, 38(10), 1766-1778. https://doi.org/10.1002/mar.21529
  46. Isti’anah, M., Suhud, U., & Usman, O. (2022). Analyzing decision-making factors for using social media: The role of trust and information sharing. European Journal of Management Issues, 30(3), 142-152. https://doi.org/10.15421/192213
  47. Jordaan, Y., & Van Heerden, G. (2017). Online privacy-related predictors of Facebook usage intensity. Computers in Human Behavior, 70, 90-96. https://doi.org/10.1016/j.chb.2016.12.048
  48. Jurkowitz, M., & Gottfried, J. (2022). Twitter is the go-to social media site for US journalists, but not for the public. https://policycommons.net/artifacts/2480855/twitter-is-the-go-to-social-media-site-for-us/3503030/
  49. Karlsen, R., & Aalberg, T. (2023). Social media and trust in news: An experimental study of the effect of Facebook on news story credibility. Digital Journalism, 11(1), 144-160. https://doi.org/10.1080/21670811.2021.1945938
  50. Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, Article 101280. https://doi.org/10.1016/j.techsoc.2020.101280
  51. Kenny, G., & Connolly, R. (2016). Drivers of health information privacy concern: A comparison study [Paper presentation]. The ACIS.
  52. Kesharwani, A., & Singh Bisht, S. (2012). The impact of trust and perceived risk on internet banking adoption in India: An extension of technology acceptance model. International Journal of Bank Marketing, 30(4), 303-322. https://doi.org/10.1108/02652321211236923
  53. Kim, Y.-I., & Lee, J. (2014). The long-run impact of a traumatic experience on risk aversion. Journal of Economic Behavior & Organization, 108, 174-186. https://doi.org/10.1016/j.jebo.2014.09.009
  54. Koksalmis, G. H., Arpacı, İ., & Koksalmis, E. (2022). Predicting the intention to use bitcoin: An extension of technology acceptance model (TAM) with perceived risk theory. In M. Al-Emran, & K. Shaalan (Eds.), Recent innovations in artificial intelligence and smart applications (pp. 105-120). Springer. https://doi.org/10.1007/978-3-031-14748-7_6
  55. Koohikamali, M., Peak, D. A., & Prybutok, V. R. (2017). Beyond self-disclosure: Disclosure of information about others in social network sites. Computers in Human Behavior, 69, 29-42. https://doi.org/10.1016/j.chb.2016.12.012
  56. Kordzadeh, N., & Warren, J. (2014). Communicating personal health information in virtual health communities: A theoretical framework [Paper presentation]. The 2014 47th Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.2014.85
  57. Lee, H. (2020). Home IoT resistance: Extended privacy and vulnerability perspective. Telematics and Informatics, 49, Article 101377. https://doi.org/10.1016/j.tele.2020.101377
  58. Lee, J., Britt, B. C., & Kanthawala, S. (2023). Taking the lead in misinformation-related conversations in social media networks during a mass shooting crisis. Internet Research, 33(2), 638-663. https://doi.org/10.1108/INTR-02-2021-0120
  59. Lin, K.-Y., Chien, C.-F., & Kerh, R. (2016). UNISON framework of data-driven innovation for extracting user experience of product design of wearable devices. Computers & Industrial Engineering, 99, 487-502. https://doi.org/10.1016/j.cie.2016.05.023
  60. Liu, X., Wang, L., Liu, X., & Zhai, X. (2024). The impact of privacy violations on subsequent consumer preferences for anthropomorphized products. Journal of Business Research, 174, Article 114505. https://doi.org/10.1016/j.jbusres.2024.114505
  61. Lwin, M. O., Wirtz, J., & Stanaland, A. J. (2016). The privacy dyad: Antecedents of promotion- and prevention-focused online privacy behaviors and the mediating role of trust and privacy concern. Internet Research, 26(4), 919-941. https://doi.org/10.1108/IntR-05-2014-0134
  62. Malik, S., Chadhar, M., Vatanasakdakul, S., & Chetty, M. (2021). Factors affecting the organizational adoption of blockchain technology: Extending the Technology–Organization–Environment (TOE) framework in the Australian context. Sustainability, 13(16), Article 9404. https://doi.org/10.3390/su13169404
  63. Martinko, M. J., Zmud, R. W., & Henry, J. W. (1996). An attributional explanation of individual resistance to the introduction of information technologies in the workplace. Behaviour & Information Technology, 15(5), 313-330. https://doi.org/10.1080/014492996120085a
  64. Meier, Y., Meinert, J., & Krämer, N. (2021). Investigating factors that affect the adoption of COVID-19 contact-tracing apps. A privacy calculus perspective. Technology, Mind, and Behavior, 2(3). https://doi.org/10.1037/tmb0000040
  65. Mican, D., Sitar-Tăut, D.-A., & Moisescu, O.-I. (2020). Perceived usefulness: A silver bullet to assure user data availability for online recommendation systems. Decision Support Systems, 139, Article 113420. https://doi.org/10.1016/j.dss.2020.113420
  66. Milne, G. R., & Culnan, M. J. (2004). Strategies for reducing online privacy risks: Why consumers read (or don’t read) online privacy notices. Journal of Interactive Marketing, 18(3), 15-29. https://doi.org/10.1002/dir.20009
  67. Mohamed, N., & Ahmad, I. H. (2012). Information privacy concerns, antecedents and privacy measure use in social networking sites: Evidence from Malaysia. Computers in Human Behavior, 28(6), 2366-2375. https://doi.org/10.1016/j.chb.2012.07.008
  68. Muliadi, M., Muhammadiah, M. u., Amin, K. F., Kaharuddin, K., Junaidi, J., Pratiwi, B. I., & Fitriani, F. (2022). The information sharing among students on social media: The role of social capital and trust. VINE Journal of Information and Knowledge Management Systems, 54(4), 823-840. https://doi.org/10.1108/VJIKMS-12-2021-0285
  69. Mutimukwe, C., Viberg, O., Oberg, L. M., & Cerratto-Pargman, T. (2022). Students’ privacy concerns in learning analytics: Model development. British Journal of Educational Technology, 53(4), 932-951. https://doi.org/10.1111/bjet.13234
  70. NA. (2022). Frequency of using selected news sources among millennials in the United States as of August 2022. Statista. https://www.statista.com/statistics/1010456/united-states-millennials-news-consumption/
  71. Newman, N., Fletcher, R., Schulz, A., Andi, S., Robertson, C. T., & Nielsen, R. K. (2021). Reuters Institute digital news report 2021. Reuters Institute. https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2021
  72. Nunnally, J. (1978). Psychometric methods. McGraw-Hill.
  73. Oden, A., & Porter, L. (2023). The kids are online: Teen social media use, civic engagement, and affective polarization. Social Media + Society, 9(3). https://doi.org/10.1177/20563051231186364
  74. Olan, F., Jayawickrama, U., Arakpogun, E. O., Suklan, J., & Liu, S. (2024). Fake news on social media: The impact on society. Information Systems Frontiers, 26(2), 443-458. https://doi.org/10.1007/s10796-022-10242-z
  75. Orszaghova, E. & Blank, G., (2024). Does the type of privacy-protective behaviour matter? An analysis of online privacy protective action and motivation, Information, Communication & Society. https://doi.org/10.1080/1369118X.2024.2334906
  76. Ortiz, J., Chih, W. H., & Tsai, F.-S. (2018). Information privacy, consumer alienation, and lurking behavior in social networking sites. Computers in Human Behavior, 80, 143-157. https://doi.org/10.1016/j.chb.2017.11.005
  77. Park, S., & Lee, J. Y. (2023). Incidental news exposure on Facebook and its relation to trust in news. Social Media + Society, 9(1). https://doi.org/10.1177/20563051231158823
  78. Primack, B. A., Karim, S. A., Shensa, A., Bowman, N., Knight, J., & Sidani, J. E. (2019). Positive and negative experiences on social media and perceived social isolation. American Journal of Health Promotion, 33(6), 859-868. https://doi.org/10.1177/0890117118824196
  79. Rainer, R. K., & Harrison, A. W. (1993). Toward development of the end user computing construct in a university setting. Decision Sciences, 24(6), 1187-1202. https://doi.org/10.1111/j.1540-5915.1993.tb00510.x
  80. Rzewnicki, D. I., Shensa, A., Levenson, J. C., Primack, B. A., & Sidani, J. E. (2020). Associations between positive and negative social media experiences and sleep disturbance among young adults. Sleep Health, 6(5), 671-675. https://doi.org/10.1016/j.sleh.2020.02.013
  81. Salem, H., & Stephany, F. (2023). Wikipedia: A challenger’s best friend? Utilizing information-seeking behaviour patterns to predict US congressional elections. Information, Communication & Society, 26(1), 174-200. https://doi.org/10.1080/1369118X.2021.1942953
  82. Shearer, E., & Grieco, E. (2019). Americans are wary of the role social media sites play in delivering the news. Pew Research Center. https://www.pewresearch.org/journalism/2019/10/02/americans-are-wary-of-the-role-social-media-sites-play-in-delivering-the-news/
  83. Smith, H. J., Milberg, S. J., & Burke, S. J. (1996). Information privacy: Measuring individuals’ concerns about organizational practices. MIS Quarterly, 20(2), 167-196. https://doi.org/10.2307/249477
  84. Smith-Frigerio, S. (2021). “You are not alone”: Linking peer support to information and resources for mental health concerns in advocacy groups’ social media messaging. Health Communication, 36(14), 1980-1989. https://doi.org/10.1080/10410236.2020.1808415
  85. Stubenvoll, M., & Binder, A. (2024). Is knowledge power? Testing whether knowledge affects chilling effects and privacy-protective behaviors using browser histories. Computers in Human Behavior, 150, Article 107949. https://doi.org/10.1016/j.chb.2023.107949
  86. Sutarno, K., Estadimas, B., Taliya, A., Wardoyo, D., Hapsari, I. C., Hidayanto, A. N., & Nazief, B. A. (2020). Factors influencing user intention in opening personal data on social media [Paper presentation]. The 2020 5th International Conference on Informatics and Computing. https://doi.org/10.1109/ICIC50835.2020.9288614
  87. Tejedor, S., Romero-Rodriguez, L., & Gracia-Villar, M. (2024). Unveiling the truth: A systematic review of fact-checking and fake news research in social sciences. Online Journal of Communication and Media Technologies, 14(2), Article e202427. https://doi.org/10.30935/ojcmt/14455
  88. Thamarapani, D., & Rockmore, M. (2022). The stability and evolution of risk attitudes and time preferences after a disaster. International Journal of Disaster Risk Reduction, 70, Article 102791. https://doi.org/10.1016/j.ijdrr.2022.102791
  89. Tu, F. (2024). Empowering social media users: Nudge toward self-engaged verification for improved truth and sharing discernment. Journal of Communication, 74(3), 225-236. https://doi.org/10.1093/joc/jqae007
  90. Turcotte, J., York, C., Irving, J., Scholl, R. M., & Pingree, R. J. (2015). News recommendations from social media opinion leaders: Effects on media trust and information seeking. Journal of Computer-Mediated Communication, 20(5), 520-535. https://doi.org/10.1111/jcc4.12127
  91. van der Schyff, K., & Flowerday, S. (2023). The mediating role of perceived risks and benefits when self-disclosing: A study of social media trust and FoMO. Computers & Security, 126, Article 103071. https://doi.org/10.1016/j.cose.2022.103071
  92. Vrhovec, S., Bernik, I., & Markelj, B. (2023). Explaining information seeking intentions: Insights from a Slovenian social engineering awareness campaign. Computers & Security, 125, Article 103038. https://doi.org/10.1016/j.cose.2022.103038
  93. Warner-Søderholm, G., Bertsch, A., Sawe, E., Lee, D., Wolfe, T., Meyer, J., Engel, J., & Fatilua, U. N. (2018). Who trusts social media? Computers in Human Behavior, 81, 303-315. https://doi.org/10.1016/j.chb.2017.12.026
  94. Wiegard, R.-B., & Breitner, M. H. (2019). Smart services in healthcare: A risk-benefit-analysis of pay-as-you-live services from customer perspective in Germany. Electronic Markets, 29(1), 107-123. https://doi.org/10.1007/s12525-017-0274-1
  95. Xiao, X., Borah, P., & Su, Y. (2021). The dangers of blind trust: Examining the interplay among social media news use, misinformation identification, and news trust on conspiracy beliefs. Public Understanding of Science, 30(8), 977-992. https://doi.org/10.1177/0963662521998025
  96. Yamamoto, M., & Morey, A. C. (2019). Incidental news exposure on social media: A campaign communication mediation approach. Social Media + Society, 5(2). https://doi.org/10.1177/2056305119843619
  97. Yang, H. C. (2012). Young American consumers’ prior negative experience of online disclosure, online privacy concerns, and privacy protection behavioral intent. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 25, 179-202. https://jcsdcb.com/index.php/JCSDCB/article/view/123
  98. Youn, S. (2009). Determinants of online privacy concern and its influence on privacy protection behaviors among young adolescents. Journal of Consumer Affairs, 43(3), 389-418. https://doi.org/10.1111/j.1745-6606.2009.01146.x