Research Article

Members of Congress and the pictures in their heads: The impact of social media on elected officials

Mark Tremayne 1 *
More Detail
1 University of Texas at Arlington, Arlington, TX, USA* Corresponding Author
Online Journal of Communication and Media Technologies, 16(1), January 2026, e202610, https://doi.org/10.30935/ojcmt/17895
Published: 11 February 2026
OPEN ACCESS   52 Views   35 Downloads
Download Full Text (PDF)

ABSTRACT

The words and actions of elected officials cannot be fully understood without considering their sources of information. This study examines how social media shapes the information members of the US Congress consume and how their partisan media exposure corresponds with legislative behavior. Using Twitter (X) data from those members a partisan media index (PMI) was developed based on the ideological orientation of 35 news outlets, running from extreme left to extreme right. The analysis reveals that most members’ media diets are highly partisan and largely align with party affiliation. Democrats cluster around center-left outlets whereas Republicans show a longer and more right-skewed distribution. PMI scores strongly correlate with member ideology and with subsequent voting behavior. Even when controlling for ideology, partisan media exposure retains a small but significant relationship with voting behavior. The findings indicate that social media following patterns offer meaningful insight into elite polarization and suggest that partisan media ecosystems shape not only public opinion but also the decision-making of political leaders with implications for deliberative democracy.

CITATION (APA)

Tremayne, M. (2026). Members of Congress and the pictures in their heads: The impact of social media on elected officials. Online Journal of Communication and Media Technologies, 16(1), e202610. https://doi.org/10.30935/ojcmt/17895

REFERENCES

  1. Ad Fontes Media. (2021). White paper: Multi-analyst content analysis methodology. Ad Fontes Media. https://adfontesmedia.com/white-paper-2021/
  2. Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211-236. https://doi.org/10.1257/jep.31.2.211
  3. Alvares, C., & Dahlgren, P. (2016). Populism, extremism and media: Mapping an uncertain terrain. European Journal of Communication, 31(1), 46-57. https://doi.org/10.1177/0267323115614485
  4. Ardèvol-Abreu, A., Costa-Sánchez, C., & Delponti, P. (2024). Can information literacy increase political accountability? Linking information evaluation with obstinate partisanship via social media political homophily. Journal of Information, Technology & Politics, 21(2), 104-116. https://doi.org/10.1080/19331681.2023.2173699
  5. Beaufort, M. (2018). Digital media, political polarization and challenges to democracy. Information, Communication & Society, 21(7), 915-920. https://doi.org/10.1080/1369118X.2018.1451909
  6. Benjes-Small, C. (2021). Complex or clickbait?: The problematic media bias chart. ACRLog. https://acrlog.org/2021/02/23/complex-or-clickbait-the-problematic-media-bias-chart/
  7. Berger, J., & Milkman, K. L. (2012). What makes online content viral? Journal of Marketing Research, 49(2), 192-205. https://doi.org/10.1509/jmr.10.0353
  8. Campbell, J. E. (2016). Polarized: Making sense of a divided America. Princeton University Press. https://doi.org/10.1086/695341
  9. Carlson, M., Robinson, S., & Lewis, S. C. (2021). Digital press criticism: The symbolic dimensions of Donald Trump’s assault on US journalists as the “enemy of the people”. Digital Journalism, 9(6), 737-754. https://doi.org/10.1080/21670811.2020.1836981
  10. Chan, M., & Yi, J. (2024). Social media use and political engagement in polarized times. Examining the contextual roles of issue and affective polarization in developed democracies. Political Communication, 41(5), 743-762. https://doi.org/10.1080/10584609.2024.2325423
  11. Christensen, C. (2011). Twitter revolutions? Addressing social media and dissent. The Communication Review, 14(3), 155-157. https://doi.org/10.1080/10714421.2011.597235
  12. Duguay, S. (2018). Social media’s breaking news: The logic of automation in Facebook trending topics and Twitter moments. Media International Australia, 166(1), 20-33. https://doi.org/10.1177/1329878X17737407
  13. Dylko, I., Dolgov, I., Hoffman, W., Eckhart, N., Molina, M., & Aaziz, O. (2018). Impact of customizability technology on political polarization. Journal of Information, Technology & Politics, 15(1), 19-33. https://doi.org/10.1080/19331681.2017.1354243
  14. Fisher, C., Culloty, E., Lee, J. Y., & Park, S. (2019). Regaining control citizens who follow politicians on social media and their perceptions of journalism. Digital Journalism, 7(2), 230-250. https://doi.org/10.1080/21670811.2018.1519375
  15. Hameleers, M., Harff, D., & Schmuck, D. (2023). The alternative truth kept hidden from us: The effects of multimodal disinformation disseminated by ordinary citizens and alternative hyper-partisan media. Digital Journalism, 13(8), 1351-1372. https://doi.org/10.1080/21670811.2023.2210616
  16. Hasell, A. (2021). Shared emotion: The social amplification of partisan news on Twitter. Digital Journalism, 9(8), 1085-1102. https://doi.org/10.1080/21670811.2020.1831937
  17. Hasell, A., & Weeks, B. E. (2016). Partisan provocation: The role of partisan news use and emotional responses in political information sharing in social media. Human Communication Research, 42(4), 641-661. https://doi.org/10.1111/hcre.12092
  18. Hassan, N., Arslan, F., Li, C., & Tremayne, M. (2017). Toward automated fact-checking: Detecting check-worthy factual claims by claimbuster. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1803-1812). ACM. https://doi.org/10.1145/3097983.3098131
  19. Heseltine, M. (2025). Asymmetric polarization in online media engagement in the United States Congress. The International Journal of Press/Politics, 30(1), 299-325. https://doi.org/10.1177/19401612231211800
  20. Hetherington, M. J. (2001). Resurgent mass partisanship: The role of elite polarization. American Political Science Review, 95(3), 619-631. https://doi.org/10.1017/S0003055401003045
  21. Hickey, D., Schmitz, M., Fessler, D., Smaldino, P. E., Muric, G., & Burghardt, K. (2023, June). Auditing Elon Musk’s impact on hate speech and bots. In Proceedings of the International AAAI Conference on Web and Social Media (vol. 17, pp. 1133-1137). AAAI. https://doi.org/10.1609/icwsm.v17i1.22222
  22. Hmielowski, J. D., Beam, M. A., & Hutchens, M. J. (2016). Structural changes in media and attitude polarization: Examining the contributions of TV news before and after the telecommunications act of 1996. International Journal of Public Opinion Research, 28(2), 153-172. https://doi.org/10.1093/ijpor/edv012
  23. Horwitz, R. B. (2005). On media concentration and the diversity question. The Information Society, 21(3), 181-204. https://doi.org/10.1080/01972240490951908
  24. Huszár, F., Ktena, S. I., O’Brien, C., Belli, L., Schlaikjer, A., & Hardt, M. (2021). Algorithmic amplification of politics on Twitter. Proceedings of the National Academy of Sciences, 119(1), Article e2025334119. https://doi.org/10.1073/pnas.2025334119
  25. Iyengar, S., & Hahn, K. S. (2009). Red media, blue media: Evidence of ideological selectivity in media use. Journal of Communication, 59(1), 19-39. https://doi.org/10.1111/j.1460-2466.2008.01402.x
  26. Iyengar, S., Lelkes, Y., Levendusky, M., Malhotra, N., & Westwood, S. J. (2019). The origins and consequences of affective polarization in the United States. Annual Review of Political Science, 22(1), 129-146. https://doi.org/10.1146/annurev-polisci-051117-073034
  27. Kaiser, J., Vaccari, C., & Chadwick, A. (2022). Partisan blocking: Biased responses to shared misinformation contribute to network polarization on social media. Journal of Communication, 72(2), 214-240. https://doi.org/10.1093/joc/jqac002
  28. Kaufman, A. (2021). “Peaceful patriots”: Months after Jan. 6 insurrection, GOP members of Congress attempt to recast events of deadly attack. Boston Globe. https://www.bostonglobe.com/2021/05/12/nation/peaceful-patriots-months-after-jan-6-insurrection-gop-members-congress-attempt-revise-events-deadly-attack/
  29. Kitchens, B., Johnson, S. L., & Gray, P. (2020). Understanding echo chambers and filter bubbles: The Impact of social media on diversification and partisan shifts in news consumption. MIS Quarterly, 44(4), 1619-1649. https://doi.org/10.25300/MISQ/2020/16371
  30. Kobayashi, T., Zhang, Z., & Liu, L. (2024). Is partisan selective exposure an American peculiarity? A comparative study of news browsing behaviors in the United States, Japan, and Hong Kong. Communication Research. https://doi.org/10.1177/00936502241289109
  31. Lewis, J. B., Poole, K., Rosenthal, H., Boche, A., Rudkin, A., & Sonnet, L. (2019). Congressional roll-call votes database. Voteview. https://voteview.com/articles/data_help_rollcalls
  32. Lippmann, W. (1920). Liberty and the news. Harcourt, Brace and Howe.
  33. Lippmann, W. (1922). The world outside and the pictures in our heads. In W. Lippmann (Ed.), Public opinion (pp. 3-32). MacMillan Co. https://psycnet.apa.org/doi/10.1037/14847-001
  34. Mindich, D. T. (1998). Just the facts: How” objectivity” came to define American journalism. NYU Press.
  35. Moehler, D., & Allen, D. M. (2016). The media diet imbalance score: A measure of aggregate media diet. Communication Methods and Measures, 10(1), 4-12. https://doi.org/10.1080/19312458.2015.1118445
  36. Moore, M., & Colley, T. (2022). Two international propaganda models: Comparing RT and CGTN’s 2020 US election coverage. Journalism Practice, 18(5), 1306-1328. https://doi.org/10.1080/17512786.2022.2086157
  37. Morozov, E. (2011). The net delusion: The dark side of Internet freedom. Public Affairs.
  38. Mungiu-Pippidi, A., & Munteanu, I. (2009). Moldova’s “Twitter revolution”. Journal of Democracy, 20, 136-142. https://doi.org/10.1353/jod.0.0102
  39. Neal, Z. P. (2020). A sign of the times? Weak and strong polarization in the US Congress, 1973-2016. Social Networks, 60, 103-112. https://doi.org/10.1016/j.socnet.2018.07.007
  40. Otero, V. (2019). Ad Fontes Media’s first multi-analyst content analysis ratings project white paper. Ad Fontes Media. https://adfontesmedia.com/white-paper-2021/
  41. Pierri, F., Luceri, L., Jindal, N., & Ferrara, E. (2023). Propaganda and misinformation on Facebook and Twitter during the Russian invasion of Ukraine. In Proceedings of the 15th ACM Web Science Conference 2023 (pp. 65-74). ACM. https://doi.org/10.1145/3578503.3583597
  42. Poole, K. T., & Rosenthal, H. (1985). A spatial model for legislative roll call analysis. American Journal of Political Science, 29(2), 357-384. https://doi.org/10.2307/2111172
  43. Scott, D. T. (2007). Pundits in muckrakers’ clothing: Political blogs and the 2004 US presidential election. In M. Tremayne (Ed.), Blogging, citizenship, and the future of media (pp. 39-57). Routledge. https://doi.org/10.4324/9780203944196
  44. Shah, S., & Grant, A. (2021). Charting Congress on social media in the 2016 and 2020 elections. Pew Research Center. https://pewrsr.ch/3zWirL1
  45. Shin, J., & Thorson, K. (2017). Partisan selective sharing: The biased diffusion of fact-checking messages on social media. Journal of Communication, 67(2), 233-255. https://doi.org/10.1111/jcom.12284
  46. Sparks, J. F., & Hmielowski, J. D. (2023). At the extremes: Assessing readability, grade level, sentiment, and tone in US media outlets. Journalism Studies, 24(1), 24-44. https://doi.org/10.1080/1461670X.2022.2142646
  47. Strömbäck, J. (2023). Political alternative media as a democratic challenge. Digital Journalism, 11(5), 880-887. https://doi.org/10.1080/21670811.2023.2178947
  48. Thomsen, D. M. (2014). Ideological moderates won’t run: How party fit matters for partisan polarization in Congress. The Journal of Politics, 76(3), 786-797. https://doi.org/10.1017/S0022381614000243
  49. Törnberg, P. (2022). How digital media drive affective polarization through partisan sorting. Proceedings of the National Academy of Sciences, 119(42), Article e2207159119. https://doi.org/10.1073/pnas.2207159119
  50. Turcotte, J., York, C., Irving, J., Scholl, R. M., & Pingree, R. J. (2015). News recommendations from social media opinion leaders: Effects on media trust and information seeking. Journal of Computer-Mediated Communication, 20(5), 520-535. https://doi.org/10.1111/jcc4.12127
  51. Vaidhyanathan, S. (2018). Antisocial media: How Facebook disconnects us and undermines democracy. Oxford University Press. https://doi.org/10.1080/23254823.2020.1742021
  52. Van Kessel, P., Widjaya, R., Shah, S., Smith, A., & Hughes, A. (2020). Congress soars to new heights on social media. Pew Research Center. https://www.pewresearch.org/internet/2020/07/16/congress-soars-to-new-heights-on-social-media/
  53. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  54. Winter, S., Metzger, M. J., & Flanagin, A. J. (2016). Selective use of news cues: A multiple-motive perspective on information selection in social media environments. Journal of Communication, 66(4), 669-693. https://doi.org/10.1111/jcom.12241
  55. Wischnewski, M., Bruns, A., & Keller, T. (2021). Shareworthiness and motivated reasoning in hyper-partisan news sharing behavior on Twitter. Digital Journalism, 9(5), 549-570. https://doi.org/10.1080/21670811.2021.1903960
  56. Xu, W. W., Sang, Y., & Kim, C. (2020). What drives hyper-partisan news sharing: Exploring the role of source, style, and content. Digital Journalism, 8(4), 486-505. https://doi.org/10.1080/21670811.2020.1761264