Research Article

Exploring the impact of social media exposure patterns on people’s belief in fake news during COVID-19: A cross-gender study

Yanhong Wu 1 , Hasrina Mustafa 2 *
More Detail
1 Universiti Sains Malaysia, Penang, MALAYSIA2 Universiti Sains Malaysia, Kuala Lumpur, MALAYSIA* Corresponding Author
Online Journal of Communication and Media Technologies, 13(3), July 2023, e202326, https://doi.org/10.30935/ojcmt/13117
Published Online: 26 March 2023, Published: 01 July 2023
OPEN ACCESS   1965 Views   1939 Downloads
Download Full Text (PDF)

ABSTRACT

During COVID-19, fake news on social media seriously threatened public health. As a solution to this problem, this study examined how social media exposure patterns affect people being deeply harmed by fake news. Based on cognitive dissonance theory, this study investigated the effect of intentional and incidental exposure on belief in fake news through the mediating role of confirmation bias. The results show that intentional exposure positively influences confirmation bias and belief in fake news. Incidental exposure is the opposite. Our results also show that intentional exposure and confirmation bias negatively influence incidental exposure. Furthermore, these relationships remain unchanged by gender. This study provides theoretical and empirical contributions to reducing people’s belief in fake news.

CITATION (APA)

Wu, Y., & Mustafa, H. (2023). Exploring the impact of social media exposure patterns on people’s belief in fake news during COVID-19: A cross-gender study. Online Journal of Communication and Media Technologies, 13(3), e202326. https://doi.org/10.30935/ojcmt/13117

REFERENCES

  1. Ab Hamid, M., Sami, W., & Sidek, M. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163
  2. Apuke, O. D., & Omar, B. (2020). Modelling the antecedent factors that affect online fake news sharing on COVID-19: The moderating role of fake news knowledge. Health Education Research, 35(5), 490-503. https://doi.org/10.1093/her/cyaa030
  3. Arbuckle, J. L., & Wothke, W. (1999). Amos 4.0 user’s guide. SmallWaters Corporation
  4. Awang, Z. (2012). Research methodology and data analysis second edition. UiTM Press.
  5. Bago, B., Rand, D. G., & Pennycook, G. (2020). Fake news, fast and slow: Deliberation reduces belief in false (but not true) news headlines. Journal of Experimental Psychology: General, 149(8), 1608. https://doi.org/10.1037/xge0000729
  6. Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130-1132. https://doi.org/10.1126/science.aaa1160
  7. Barakat, K. A., Dabbous, A., & Tarhini, A. (2021). An empirical approach to understanding users’ fake news identification on social media. Online Information Review, 45(6), 1080-1096. https://doi.org/10.1108/OIR-08-2020-0333
  8. Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber? Psychological Science, 26(10), 1531-1542. https://doi.org/10.1177/0956797615594620
  9. Bento, A. I., Nguyen, T., Wing, C., Lozano-Rojas, F., Ahn, Y.-Y., & Simon, K. (2020). Evidence from internet search data shows information-seeking responses to news of local COVID-19 cases. Proceedings of the National Academy of Sciences, 117(21), 11220-11222. https://doi.org/10.1073/pnas.2005335117
  10. Blunch, N. (2012). Introduction to structural equation modeling using IBM SPSS statistics and AMOS. SAGE. https://doi.org/10.4135/9781526402257
  11. Bodecka, M., Nowakowska, I., Zajenkowska, A., Rajchert, J., Kaźmierczak, I., & Jelonkiewicz, I. (2021). Gender as a moderator between present-hedonistic time perspective and depressive symptoms or stress during COVID-19 lock-down. Personality and Individual Differences, 168, 110395. https://doi.org/10.1016/j.paid.2020.110395
  12. Bonnet, J. L., & Rosenbaum, J. E. (2020). “Fake news,” misinformation, and political bias: Teaching news literacy in the 21st century. Communication Teacher, 34(2), 103-108. https://doi.org/10.1080/17404622.2019.1625938
  13. Bridgman, A., Merkley, E., Loewen, P. J., Owen, T., Ruths, D., Teichmann, L., & Zhilin, O. (2020). The causes and consequences of COVID-19 misperceptions: Understanding the role of news and social media. Harvard Kennedy School Misinformation Review, 1(3). https://doi.org/10.37016/mr-2020-028
  14. Bronstein, M. V., Pennycook, G., Bear, A., Rand, D. G., & Cannon, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108-117. https://doi.org/10.1037/h0101832
  15. Cacciatore, M. A., Yeo, S. K., Scheufele, D. A., Xenos, M. A., Brossard, D., & Corley, E. A. (2018). Is Facebook making us dumber? Exploring social media use as a predictor of political knowledge. Journalism & Mass Communication Quarterly, 95(2), 404-424. https://doi.org/10.1177/1077699018770447
  16. Cassese, E. C., Farhart, C. E., & Miller, J. M. (2020). Gender differences in COVID-19 conspiracy theory beliefs. Politics & Gender, 16(4), 1009-1018. https://doi.org/10.1017/S1743923X20000409
  17. Chang, C. (2021). Fake news: Audience perceptions and concerted coping strategies. Digital Journalism, 9(5), 636-659. https://doi.org/10.1080/21670811.2021.1923403
  18. Chen, C.-Y., Kearney, M., & Chang, S.-L. (2021). Belief in or identification of false news according to the elaboration likelihood model. International Journal of Communication, 15(2021), 1263-1285.
  19. Clayton, K., Blair, S., Busam, J. A., Forstner, S., Glance, J., Green, G., Kawata, A., Kovvuri, A., Martin, J., Morgan, E., Sandhu, M., Sang, R., Scholz-Bright, R., Welch, A. T., Wolff, A. G., Zhou, A., & Nyhan, B. (2020). Real solutions for fake news? Measuring the effectiveness of general warnings and fact-check tags in reducing belief in false stories on social media. Political Behavior, 42(4), 1073-1095. https://doi.org/10.1007/s11109-019-09533-0
  20. Colleoni, E., & Corsaro, D. (2022). Critical issues in artificial intelligence algorithms and their implications for digital marketing. In R. Llamas, & R. Belk (Eds.), The Routledge handbook of digital consumption (pp. 166-177). Routledge. https://doi.org/10.4324/9781003317524-16
  21. Collier, J. E. (2020). Applied structural equation modeling using AMOS: Basic to advanced techniques. Routledge. https://doi.org/10.4324/9781003018414
  22. Currie Sivek, S., & Bloyd-Peshkin, S. (2017). Where do facts matter? Journalism Practice, 12(4), 400-421. https://doi.org/10.1080/17512786.2017.1307694
  23. DeVito, M. A. (2017). From editors to algorithms: A values-based approach to understanding story selection in the Facebook news feed. Digital Journalism, 5(6), 753-773. https://doi.org/10.1080/21670811.2016.1178592
  24. Di Domenico, G., Nunan, D., Sit, J., & Pitardi, V. (2021). Free but fake speech: When giving primacy to the source decreases misinformation sharing on social media. Psychology & Marketing, 38(10), 1700-1711. https://doi.org/10.1002/mar.21479
  25. Diehl, T., & Lee, S. (2022). Testing the cognitive involvement hypothesis on social media: ‘News finds me’ perceptions, partisanship, and fake news credibility. Computers in Human Behavior, 128, 107121. https://doi.org/10.1016/j.chb.2021.107121
  26. Dreyfuss, E., & Lapowsky, I. (2019). Facebook is changing news feed (again) to stop fake news. Wired. https://www.wired.com/story/facebook-click-gap-news-feed-changes/
  27. Etheridge, B., & Spantig, L. (2020). The gender gap in mental well-being during the COVID-19 outbreak: Evidence from the UK. European Economic Review, 145, 104114. https://doi.org/10.1016/j.euroecorev.2022.104114
  28. Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11
  29. Fan, X., Griffin, D. J., & Tagg, E. P. (2022). Lie judgment trigger sensitivity and truth-bias: truth default theory in intergroup communication. Communication Quarterly, 70(4), 448-468. https://doi.org/10.1080/01463373.2022.2079994
  30. Fantl, J. (2021). Fake news vs. echo chambers. Social Epistemology, 35(6), 645-659. https://doi.org/10.1080/02691728.2021.1946201
  31. Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press. https://doi.org/10.1515/9781503620766
  32. Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298-320. https://doi.org/10.1093/poq/nfw006
  33. Fosch-Villaronga, E., Poulsen, A., Søraa, R. A., & Custers, B. (2021). A little bird told me your gender: Gender inferences in social media. Information Processing & Management, 58(3), 102541. https://doi.org/10.1016/j.ipm.2021.102541
  34. Galasso, V., Pons, V., Profeta, P., Becher, M., Brouard, S., & Foucault, M. (2020). Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proceedings of the National Academy of Sciences, 117(44), 27285-27291. https://doi.org/10.1073/pnas.2012520117
  35. Garrett, R. K. (2017). The “echo chamber” distraction: Disinformation campaigns are the problem, not audience fragmentation. Journal of Applied Research in Memory and Cognition, 6(2017), 370-376. https://doi.org/10.1016/j.jarmac.2017.09.011
  36. Gelfert, A. (2018). Fake news: A definition. Informal Logic, 38(1), 84-117. https://doi.org/10.22329/il.v38i1.5068
  37. Gupta, A., Li, H., Farnoush, A., & Jiang, W. (2022). Understanding patterns of COVID-19 infodemic: A systematic and pragmatic approach to curb fake news. Journal of Business Research, 140, 670-683. https://doi.org/10.1016/j.jbusres.2021.11.032
  38. Gwebu, K. L., Wang, J., & Zifla, E. (2021). Can warnings curb the spread of fake news? The interplay between warning, trust and confirmation bias. Behavior & Information Technology, 41(16), 3552-3573. https://doi.org/10.1080/0144929X.2021.2002932
  39. Hameleers, M., & Van der Meer, T. G. (2020). Misinformation and polarization in a high-choice media environment: How effective are political fact-checkers? Communication Research, 47(2), 227-250. https://doi.org/10.1177/0093650218819671
  40. Heiss, R., & Matthes, J. (2019). Does incidental exposure on social media equalize or reinforce participatory gaps? Evidence from a panel study. New Media & Society, 21(11-12), 2463-2482. https://doi.org/10.1177/1461444819850755
  41. Hou, F., Bi, F., Jiao, R., Luo, D., & Song, K. (2020). Gender differences of depression and anxiety among social media users during the COVID-19 outbreak in China: A cross-sectional study. BMC Public Health, 20(1), 1-11. https://doi.org/10.1186/s12889-020-09738-7
  42. Hua, J., & Shaw, R. (2020). Corona virus (COVID-19) “infodemic” and emerging issues through a data lens: The case of China. International Journal of Environmental Research and Public Health, 17(7), 2309. https://doi.org/10.3390/ijerph17072309
  43. Ilieva, J., Baron, S., & Healey, N. M. (2002). Online surveys in marketing research. International Journal of Market Research, 44(3), 1-14. https://doi.org/10.1177/147078530204400303
  44. Jonas, E., Schulz-Hardt, S., Frey, D., & Thelen, N. (2001). Confirmation bias in sequential information search after preliminary decisions: An expansion of dissonance theoretical research on selective exposure to information. Journal of Personality and Social Psychology, 80(4), 557. https://doi.org/10.1037/0022-3514.80.4.557
  45. Jones-Jang, S. M., Mortensen, T., & Liu, J. (2021). Does media literacy help identification of fake news? Information literacy helps, but other literacies don’t. American Behavioral Scientist, 65(2), 371-388. https://doi.org/10.1177/0002764219869406
  46. Khan, I., Haleem, A., & Javaid, M. (2020). Analyzing COVID-19 pandemic through cases, deaths, and recoveries. Journal of Oral Biology and Craniofacial Research, 10(4), 450-469. https://doi.org/10.1016/j.jobcr.2020.08.003
  47. Kim, Y., Chen, H.-T., & De Zúñiga, H. G. (2013). Stumbling upon news on the Internet: Effects of incidental news exposure and relative entertainment use on political engagement. Computers in Human Behavior, 29(6), 2607-2614. https://doi.org/10.1016/j.chb.2013.06.005
  48. Kingsbury, M., Reme, B.-A., Skogen, J. C., Sivertsen, B., Øverland, S., Cantor, N., Hysing, M., Petrie, K., & Colman, I. (2021). Differential associations between types of social media use and university students’ non-suicidal self-injury and suicidal behavior. Computers in Human Behavior, 115, 106614. https://doi.org/10.1016/j.chb.2020.106614
  49. Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.
  50. Knobloch-Westerwick, S., Mothes, C., & Polavin, N. (2020). Confirmation bias, ingroup bias, and negativity bias in selective exposure to political information. Communication Research, 47(1), 104-124. https://doi.org/10.1177/0093650217719596
  51. Laato, S., Islam, A. N., Islam, M. N., & Whelan, E. (2020). What drives unverified information sharing and cyberchondria during the COVID-19 pandemic? European Journal of Information Systems, 29(3), 288-305. https://doi.org/10.1080/0960085X.2020.1770632
  52. Lachlan, K. A., Hutter, E., Gilbert, C., & Spence, P. R. (2021). Need for cognition and rumination: Alternate explanations for sex differences in disaster information seeking. Progress in Disaster Science, 11, 100180. https://doi.org/10.1016/j.pdisas.2021.100180
  53. Lai, K., Xiong, X., Jiang, X., Sun, M., & He, L. (2020). Who falls for rumor? Influence of personality traits on false rumor belief. Personality and Individual Differences, 152, 109520. https://doi.org/10.1016/j.paid.2019.109520
  54. Laufer, A., & Shechory Bitton, M. (2021). Gender differences in the reaction to COVID-19. Women & Health, 61(8), 800-810. https://doi.org/10.1080/03630242.2021.1970083
  55. Lee, H. J., & Park, B.-W. (2020). How to reduce confirmation bias using linked open data knowledge repository. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 410-416). https://doi.org/10.1109/BigComp48618.2020.00-39
  56. Lee, J. K., & Kim, E. (2017). Incidental exposure to news: Predictors in the social media setting and effects on information gain online. Computers in Human Behavior, 75, 1008-1015. https://doi.org/10.1016/j.chb.2017.02.018
  57. Li, A., Wang, S., Cai, M., Sun, R., & Liu, X. (2021). Self-compassion and life-satisfaction among Chinese self-quarantined residents during COVID-19 pandemic: A moderated mediation model of positive coping and gender. Personality and Individual Differences, 170, 110457. https://doi.org/10.1016/j.paid.2020.110457
  58. Liu, F., Xiao, B., Lim, E. T., & Tan, C.-W. (2017). Investigating the impact of gender differences on alleviating distrust via electronic word-of-mouth. Industrial Management & Data Systems, 117(3), 620-642. https://doi.org/10.1108/IMDS-04-2016-0150
  59. Lokot, T., & Diakopoulos, N. (2016). News bots: Automating news and information dissemination on Twitter. Digital Journalism, 4(6), 682-699. https://doi.org/10.1080/21670811.2015.1081822
  60. Luo, T., Chen, W., & Liao, Y. (2021). Social media use in China before and during COVID-19: Preliminary results from an online retrospective survey. Journal of Psychiatric Research, 140, 35-38. https://doi.org/10.1016/j.jpsychires.2021.05.057
  61. Martel, C., Pennycook, G., & Rand, D. G. (2020). Reliance on emotion promotes belief in fake news. Cognitive Research: Principles and Implications, 5(1), 1-20. https://doi.org/10.1186/s41235-020-00252-3
  62. Masip, P., Suau, J., & Ruiz-Caballero, C. (2020). Incidental exposure to non-like-minded news through social media: Opposing voices in echo-chambers’ news feeds. Media and Communication, 8(4), 53-62. https://doi.org/10.17645/mac.v8i4.3146
  63. Matthes, J., Nanz, A., Stubenvoll, M., & Heiss, R. (2020). Processing news on social media: The political incidental news exposure model (PINE). Journalism, 21(8), 1031-1048. https://doi.org/10.1177/1464884920915371
  64. Mauvais-Jarvis, F., Merz, N. B., Barnes, P. J., Brinton, R. D., Carrero, J.-J., DeMeo, D. L., De Vries, G. J., Epperson, C. N., Govindan, R., Klein, S. L., Lonardo, A., Maki, P. M., McCullough, L. D., Ragitz-Zagrosek, V., Regebsteiner, J. G., Rubin, J. B., Sandberg, K., & Suzuki, A. (2020). Sex and gender: Modifiers of health, disease, and medicine. The Lancet, 396(10250), 565-582. https://doi.org/10.1016/S0140-6736(20)31561-0
  65. McGrath, A. (2017). Dealing with dissonance: A review of cognitive dissonance reduction. Social and Personality Psychology Compass, 11(12), e12362. https://doi.org/10.1111/spc3.12362
  66. Mercier, H. (2016). Confirmation bias–myside bias. In R. F. Pohl (Ed.), Cognitive illusions: Intriguing phenomena in judgement, thinking and memory (pp. 109-124). Psychology Press. https://doi.org/10.4324/9781315696935-11
  67. Mercier, H. (2018). The enigma of reason. In H. Mercier, & D. Sperber (Eds.), The enigma of reason. Harvard University Press. https://doi.org/10.2307/j.ctv2sp3dd8
  68. Mishra, M. (2016). Confirmatory factor analysis (CFA) as an analytical technique to assess measurement error in survey research: A review. Paradigm, 20(2), 97-112. https://doi.org/10.1177/0971890716672933
  69. Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5
  70. Mukhtar, S. (2021). Psychology and politics of COVID-19 misinfodemics: Why and how do people believe in misinfodemics? International Sociology, 36(1), 111-123. https://doi.org/10.1177/0268580920948807
  71. Nanz, A., Heiss, R., & Matthes, J. (2020). Antecedents of intentional and incidental exposure modes on social media and consequences for political participation: A panel study. Acta Politica, 57, 235-253. https://doi.org/10.1057/s41269-020-00182-4
  72. Nelson, J. L., & Taneja, H. (2018). The small, disloyal fake news audience: The role of audience availability in fake news consumption. New Media & Society, 20(10), 3720-3737. https://doi.org/10.1177/1461444818758715
  73. Newburn, F. (2020). Gender differences in behavior and attitudes toward COVID-19: Perceived risk of infection, negative cognitive emotions, and sleep disturbances. Journal of Research in Gender Studies, 10, 117. https://doi.org/10.22381/JRGS10220207
  74. Nicholson, D. H., Hopthrow, T., & Randsley de Moura, G. (2022). Gender, hidden profiles, and the individual preference effect. Journal of Applied Social Psychology, 52(8), 735-750. https://doi.org/10.1111/jasp.12846
  75. Pang, H., Liu, J., & Lu, J. (2022). Tackling fake news in socially mediated public spheres: A comparison of Weibo and WeChat. Technology in Society, 70, 102004. https://doi.org/10.1016/j.techsoc.2022.102004
  76. Pearson, G. D. H., & Knobloch-Westerwick, S. (2019). Is the confirmation bias bubble larger online? Pre-election confirmation bias in selective exposure to online versus print political information. Mass Communication and Society, 22(4), 466-486. https://doi.org/10.1080/15205436.2019.1599956
  77. Peters, U. (2020). What is the function of confirmation bias? Erkenntnis, 87, 1351-1376. https://doi.org/10.1007/s10670-020-00252-1
  78. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
  79. Powers, E. (2017). My news feed is filtered? Awareness of news personalization among college students. Digital Journalism, 5(10), 1315-1335. https://doi.org/10.1080/21670811.2017.1286943
  80. Purcell, K., Rainie, L., Mitchell, A., Rosenstiel, T., & Olmstead, K. (2010). Understanding the participatory news consumer. Pew Internet and American Life Project, 1, 19-21.
  81. Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on Facebook. SSRN, 2795110. https://doi.org/10.2139/ssrn.2795110
  82. Ratner, B. (2009). The correlation coefficient: Its values range between +1/-1, or do they? Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139-142. https://doi.org/10.1057/jt.2009.5
  83. Salgotra, R., Gandomi, M., & Gandomi, A. H. (2020). Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries. Chaos, Solitons & Fractals, 140, 110118. https://doi.org/10.1016/j.chaos.2020.110118
  84. Scheibenzuber, C., Hofer, S., & Nistor, N. (2021). Designing for fake news literacy training: A problem-based undergraduate online-course. Computers in Human Behavior, 121, 106796. https://doi.org/10.1016/j.chb.2021.106796
  85. Serrano-Puche, J., Beatriz Fernández, C., & Rodríguez-Virgili, J. (2018). Political information and incidental exposure in social media: The cases of Argentina, Chile, Spain and Mexico. Doxa Comunicación [Doxa Communication], 27, 19-42. https://doi.org/10.31921/doxacom.n27a1
  86. Shahin, S., Saldaña, M., & Gil de Zuniga, H. (2021). Peripheral elaboration model: The impact of incidental news exposure on political participation. Journal of Information Technology & Politics, 18(2), 148-163. https://doi.org/10.1080/19331681.2020.1832012
  87. Shane, T., Willaert, T., & Tuters, M. (2022). The rise of “gaslighting”: Debates about disinformation on Twitter and 4chan, and the possibility of a “good echo chamber”. Popular Communication, 20(3), 178-192. https://doi.org/10.1080/15405702.2022.2044042
  88. Sharevski, F., Alsaadi, R., Jachim, P., & Pieroni, E. (2022). Misinformation warnings: Twitter’s soft moderation effects on COVID-19 vaccine belief echoes. Computers & Security, 114, 102577. https://doi.org/10.1016/j.cose.2021.102577
  89. Statista. (2021). Digital 2021: Global digital overview.
  90. Steel, D. (2018). If the facts were not untruths, their implications were: Sponsorship bias and misleading communication. Kennedy Institute of Ethics Journal, 28(2), 119-144. https://doi.org/10.1353/ken.2018.0011
  91. Stoltz, D. S., & Lizardo, O. (2018). Deliberate trust and intuitive faith: A dual‐process model of reliance. Journal for the Theory of Social Behavior, 48(2), 230-250. https://doi.org/10.1111/jtsb.12160
  92. Subramaniam, M., Taylor, N. G., Jean, B. S., Follman, R., Kodama, C., & Casciotti, D. (2015). As simple as that?: Tween credibility assessment in a complex online world. Journal of Documentation, 71(3), 550-571. https://doi.org/10.1108/JD-03-2014-0049
  93. Tan, W.-K., & Hsu, C. Y. (2022). The application of emotions, sharing motivations, and psychological distance in examining the intention to share COVID-19-related fake news. Online Information Review, 47(1), 59-80. https://doi.org/10.1108/OIR-08-2021-0448
  94. Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
  95. Tandoc, E. C., Lee, J., Chew, M., Tan, F. X., & Goh, Z. H. (2021). Falling for fake news: The role of political bias and cognitive ability. Asian Journal of Communication, 31(4), 237-253. https://doi.org/10.1080/01292986.2021.1941149
  96. Thelwall, M., & Thelwall, S. (2020). A thematic analysis of highly retweeted early COVID-19 tweets: Consensus, information, dissent and lockdown life. Aslib Journal of Information Management, 72(6), 945-962. https://doi.org/10.1108/AJIM-05-2020-0134
  97. Thelwall, M., Bailey, C., Tobin, C., & Bradshaw, N.-A. (2019). Gender differences in research areas, methods and topics: Can people and thing orientations explain the results? Journal of Informetrics, 13(1), 149-169. https://doi.org/10.1016/j.joi.2018.12.002
  98. Unkelbach, C., Koch, A., Silva, R. R., & Garcia-Marques, T. (2019). Truth by repetition: Explanations and implications. Current Directions in Psychological Science, 28(3), 247-253. https://doi.org/10.1177/0963721419827854
  99. Van Brussel, S., Timmermans, M., Verkoeijen, P., & Paas, F. (2020). ‘Consider the opposite’–Effects of elaborative feedback and correct answer feedback on reducing confirmation bias–A pre-registered study. Contemporary Educational Psychology, 60, 101844. https://doi.org/10.1016/j.cedpsych.2020.101844
  100. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  101. Wang, T.-L. (2020). Does fake news matter to election outcomes? The case study of Taiwan’s 2018 local elections. Asian Journal for Public Opinion Research, 8(2), 67-104.
  102. Weeks, B. E., Lane, D. S., Kim, D. H., Lee, S. S., & Kwak, N. (2017). Incidental exposure, selective exposure, and political information sharing: Integrating online exposure patterns and expression on social media. Journal of Computer-Mediated Communication, 22(6), 363-379. https://doi.org/10.1111/jcc4.12199
  103. Westerwick, A., Johnson, B. K., & Knobloch-Westerwick, S. (2017). Confirmation biases in selective exposure to political online information: Source bias vs. content bias. Communication Monographs, 84(3), 343-364. https://doi.org/10.1080/03637751.2016.1272761
  104. Williams, P., Kern, M. L., & Waters, L. (2016). Exploring selective exposure and confirmation bias as processes underlying employee work happiness: An intervention study. Frontiers in Psychology, 7, 878. https://doi.org/10.3389/fpsyg.2016.00878
  105. Wohn, D. Y., & Ahmadi, M. (2019). Motivations and habits of micro-news consumption on mobile social media. Telematics and Informatics, 44, 101262. https://doi.org/10.1016/j.tele.2019.101262
  106. Wright, C., Gatlin, K., Acosta, D., & Taylor, C. (2022). Portrayals of the Black Lives Matter Movement in hard and fake news and consumer attitudes toward African Americans. Howard Journal of Communications, 34(1), 19-41. https://doi.org/10.1080/10646175.2022.2065458
  107. Yang, C., Zhou, X., & Zafarani, R. (2021a). CHECKED: Chinese COVID-19 fake news dataset. Social Network Analysis and Mining, 11(1), 1-8. https://doi.org/10.1007/s13278-021-00766-8
  108. Yang, Y., Kuo, H., & Fei, J. (2021b). China dealing with the impact of fake news: Roles of governments in the “post-truth” predicament. Communication, Technologies et développement [Communication, Technologies and Development], 10. https://doi.org/10.4000/ctd.5960
  109. Yin, C., Sun, Y., Fang, Y., & Lim, K. (2018). Exploring the dual-role of cognitive heuristics and the moderating effect of gender in microblog information credibility evaluation. Information Technology & People, 31(3), 741-769. https://doi.org/10.1108/ITP-12-2016-0300
  110. Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676. https://doi.org/10.1016/S0140-6736(20)30461-X
  111. Zhang, S., Pian, W., Ma, F., Ni, Z., & Liu, Y. (2021). Characterizing the COVID-19 infodemic on Chinese social media: Exploratory study. JMIR Public Health and Surveillance, 7(2), e26090. https://doi.org/10.2196/26090
  112. Zhao, H., Fu, S., & Chen, X. (2020). Promoting users’ intention to share online health articles on social media: The role of confirmation bias. Information Processing & Management, 57(6), 102354. https://doi.org/10.1016/j.ipm.2020.102354
  113. Zhou, S. (2021). Impact of perceived risk on epidemic information seeking during the outbreak of COVID-19 in China. Journal of Risk Research, 24(3-4), 477-491. https://doi.org/10.1080/13669877.2021.1907609
  114. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., & Procter, R. (2018). Detection and resolution of rumors in social media. ACM Computing Surveys, 51(2), 1-36. https://doi.org/10.1145/3161603