Research Article

Climate change information sharing behavior on social media among young users in Guangzhou, China

Yang Jiao 1 , Mohamad Saifudin Mohamad Saleh 1 * , Miao Huang 2
More Detail
1 School of Communication, Universiti Sains Malaysia, Penang, MALAYSIA2 School of Animation and Digital Arts, Communication University of China, Nanjing, CHINA* Corresponding Author
Online Journal of Communication and Media Technologies, 15(2), April 2025, e202511, https://doi.org/10.30935/ojcmt/15985
Published Online: 17 February 2025, Published: 01 April 2025
OPEN ACCESS   4278 Views   1378 Downloads
Download Full Text (PDF)

ABSTRACT

In China, the use of audio-visual media and interactive features to improve user engagement and understanding of climate change has made social media prominent in the dissemination of climate change information, particularly among young people who are the main users of social media. This empirical study uses the technology acceptance model to explore the factors impacting the intention and behavior of climate change information sharing. This study employed quantitative methods and purposive sampling, engaging 552 young adults aged 18–30 years through an online questionnaire. SPSS and SmartPLS analyzed the data, leading to the findings of this study. The results revealed that perceived ease of use (PEU), perceived usefulness (PU), and social media influencer trust (SMIT) considerably affected this cohort’s intention to share climate change information on social media (BiliBili). Furthermore, this study found that environmental concern is a moderator that affects the relationship between PEU, PU, SMIT, and intention to share climate change information. This study contributes to the body of knowledge on climate change communication, particularly in understanding Chinese youth’s climate change sharing behavior using social media.

CITATION (APA)

Jiao, Y., Mohamad Saleh, M. S., & Huang, M. (2025). Climate change information sharing behavior on social media among young users in Guangzhou, China. Online Journal of Communication and Media Technologies, 15(2), e202511. https://doi.org/10.30935/ojcmt/15985

REFERENCES

  1. Ahmad, Z., Soroya, S. H., & Mahmood, K. (2023). Bonding and bridging social capital as predictors of information sharing intention and behaviour among Pakistani Facebook users. Information Development. https://doi.org/10.1177/02666669231200458
  2. Alenazy, W. M., Al-Rahmi, W. M., & Khan, M. S. (2019). Validation of TAM model on social media use for collaborative learning to enhance collaborative authoring. IEEE Access, 7, 71550–71562. https://doi.org/10.1109/access.2019.2920242
  3. Bilgihan, A., Barreda, A. A., Okumuş, F., & Nusair, K. (2016). Consumer perception of knowledge-sharing in travel-related online social networks. Tourism Management, 52, 287–296. https://doi.org/10.1016/j.tourman.2015.07.002
  4. Blue Lion Technology. (2022). Analysis of user group characteristics on BiliBili, introduction of BiliBili user group. Weixin Official Accounts Platform. https://mp.weixin.qq.com/s/831jX19aq8cfI_WU7RQubw
  5. Brar, P. S., Shah, B., Singh, J., Ali, F., & Kwak, D. (2022). Using modified technology acceptance model to evaluate the adoption of a proposed IoT-based indoor disaster management software tool by rescue workers. Sensors, 22(5), Article 1866. https://doi.org/10.3390/s22051866
  6. Brosch, T. (2021). Affect and emotions as drivers of climate change perception and action: A review. Current Opinion in Behavioral Sciences, 42, 15–21. https://doi.org/10.1016/j.cobeha.2021.02.001
  7. Cai, W., Zhang, C., Zhang, S., Bai, Y., Callaghan, M., Chang, N., Chen, B., Chen, H., Cheng, L., Cui, X., Dai, H., Danna, B., Dong, W., Fan, W., Fang, X., Gao, T., Geng, Yang. J., Guan, D., …, & Gong, P. (2022). The 2022 China report of the Lancet countdown on health and climate change: Leveraging climate actions for healthy ageing. The Lancet Public Health, 7(12), e1073–e1090. https://doi.org/10.1016/s2468-2667(22)00224-9
  8. Central Committee of the Communist Party of China & State Council of China. (2017). Medium and long-term youth development plan (2016-2025). People’s Publishing House. https://youth.ucas.ac.cn
  9. Che, S., Kuang, K., & Liu, S. (2024). Climate communication with Chinese youth by Chinese nongovernmental organizations: A case study of Chinese weather enthusiasts on BiliBili. Weather, Climate, and Society, 16(3), 467–479. https://doi.org/10.1175/WCAS-D-23-0131.1
  10. Chen, B., Chen, F., Ciais, P., Zhang, H., Lu, H., Wang, T., Chevallier, F., Li, Z., Yuan, W., & Peters, W. (2022). Challenges to achieve carbon neutrality of China by 2060: Status and perspectives. Science Bulletin, 67(20), 2030–2035. https://doi.org/10.1016/j.scib.2022.08.025
  11. Chen, L., Wu, Q., & J. L. (2022). Impact of environmental concern on ecological purchasing behaviour: The moderating effect of prosociality. Sustainability, 14(5), Article 3004. https://doi.org/10.3390/su14053004
  12. Chen, M., Yao, T., & Wang, K. (2023). The economic impact of climate change: A bibliometric analysis of research hotspots and trends. Environmental Science and Pollution Research, 30, 47935–47955. https://doi.org/10.1007/s11356-023-25721-2
  13. Chi, T. (2018). Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services, 44, 274–284. https://doi.org/10.1016/j.jretconser.2018.07.019
  14. CMA Climate Change Center. (2021). Blue book on climate change in China. Science Press.
  15. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
  16. Deng, X., Nie, W., Li, X., Wu, J., Yin, Z., Han, J., Pan, H., & Lam, C. K. C. (2023). Influence of built environment on outdoor thermal comfort: A comparative study of new and old urban blocks in Guangzhou. Building and Environment, 234, Article 110133. https://doi.org/10.1016/j.buildenv.2023.110133
  17. Ding, X., Kou, Y., Xu, Y., & Zhang, P. (2022). “As uploaders, we have the responsibility”: Individualized professionalization of BiliBili uploaders. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1–14). https://doi.org/10.1145/3491102.3517509
  18. Duan, H., Deyu, Y., Cai, Z., & Wang, S. (2022). Valuing the impact of climate change on China’s economic growth. Economic Analysis and Policy, 74, 155–174. https://doi.org/10.1016/j.eap.2022.01.019
  19. Dwivedi, Y. K., Hughes, L., Kar, A. K., Baabdullah, A. M., Grover, P., Abbas, R., Andreini, D., Abumoghli, I., Barlette, Y., Bunker. D., Kruse, L. L., Constantiou, I., Davison, R. M., De’, R., Dubey, R., Taylor, H. F., Gupta, B., Wu, H., Kodama, M., …, & Wade, M. (2022). Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. International Journal of Information Management, 63, Article 102456. https://doi.org/10.1016/j.ijinfomgt.2021.102456
  20. Elareshi, M., & Ziani, A. (2019). Digital and interactive social media among Middle East women: Empirical TAM study. Media Watch, 10(2), 235–250. https://doi.org/10.15655/mw/2019/v10i2/49642
  21. Enke, N., & Borchers, N. S. (2019). Social media influencers in strategic communication: A conceptual framework for strategic social media influencer communication. International Journal of Strategic Communication, 13(4), 261–277. https://doi.org/10.1080/1553118x.2019.1620234
  22. Finch, K. C., Snook, K. R., Duke, C. H., Fu, K., Tse, Z. T. H., Adhikari, A., & Fung, I. C. (2016). Public health implications of social media use during natural disasters, environmental disasters, and other environmental concerns. Natural Hazards, 83(1), 729–760. https://doi.org/10.1007/s11069-016-2327-8
  23. Gislason, M., Galway, L. P., Buse, C. G., Parkes, M. W., & Rees, E. R. (2021). Place-based climate change communication and engagement in Canada’s provincial north: Lessons learned from climate champions. Environmental Communication, 15(4), 530–545. https://doi.org/10.1080/17524032.2020.1869576
  24. Gkargkavouzi, A., Paraskevopoulos, S., & Matsiori, S. (2018). Assessing the structure and correlations of connectedness to nature, environmental concerns and environmental behaviour in a Greek context. Current Psychology, 40(1), 154–171. https://doi.org/10.1007/s12144-018-9912-9
  25. Haastrup, H. K. (2023). Having fun saving the climate. Persona Studies, 9(1), 36–51. https://doi.org/10.21153/psj2023vol9no1art1884
  26. Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). SAGE.
  27. Hair Jr, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. The Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/mtp1069-6679190202
  28. Håkansson, P., & Witmer, H. (2015). Social media and trustA systematic literature review. Journal of Business and Economics, 6(3), 517–524. https://doi.org/10.15341/jbe(2155-7950)/03.06.2015/010
  29. Hansen, S. M. (2021). The digital audience–How social media platforms encourage behaviour between content creators and their audiences [Master’s thesis, The University of Bergen].
  30. Henseler, J., & Sarstedt, M. (2012). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580. https://doi.org/10.1007/s00180-012-0317-1
  31. Hoang, H. C., Hoang, T. Q. H., Chovancová, M., & Jibril, A. B. (2019). The theory of planned behaviour toward organic food in Vietnam: The moderation of environmental concern. In Proceedings of the DOKBAT 2019 – 15th International Bata Conference for PhD Students and Young Researchers. http://hdl.handle.net/10563/52487
  32. Huang, M., Saleh, M. I., & Zolkepli, I. A. (2023). The moderating effect of green advertising on the relationship between gamification and sustainable consumption behaviour: A case study of the Ant Forest Social Media App. Sustainability, 15(4), Article 2883. https://doi.org/10.3390/su15042883
  33. Janmaimool, P., & Chudech, S. (2020). Effect of domestic and global environmental events on environmental concern and environmental responsibility among university students. Sustainability, 12(4), Article 1610. https://doi.org/10.3390/su12041610
  34. Junaidi, J., Wenhai, C., & Jaime, O. (2020). Antecedents of information seeking and sharing on social networking sites: An empirical study of Facebook users. International Journal of Communication, 14, 5705–5728.
  35. Kavota, J. K., Kamdjoug, J. R. K., & Wamba, S. F. (2020). Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo. International Journal of Information Management, 52, Article 102068. https://doi.org/10.1016/j.ijinfomgt.2020.102068
  36. Kenny, D. A. (2016). Effect size of indirect effects in structural equation models. Social Methods & Research, 45(3), 1–29.
  37. Khan, M. N., Ashraf, Seinen, D., Khan, K. U., & Laar, R. A. (2021). Social media for knowledge acquisition and dissemination: The impact of the COVID-19 pandemic on collaborative learning driven social media adoption. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.648253
  38. Knupfer, H., Neureiter, A., & Matthes, J. (2023). From social media diet to public riot? Engagement with “greenfluencers” and young social media users’ environmental activism. Computers in Human Behaviour, 139, Article 107527. https://doi.org/10.1016/j.chb.2022.107527
  39. Lanshiwendao (2022). Analysis of Bilibili user group characteristics and introduction to Bilibili user population. https://mp.weixin.qq.com/s/831jX19aq8cfI_WU7RQubw
  40. Lee, Y., Lee, J., & Hwang, Y. (2015). Relating motivation to information and communication technology acceptance: Self-determination theory perspective. Computers in Human Behaviour, 51, 418–428. https://doi.org/10.1016/j.chb.2015.05.021
  41. Liou, D., Chih, W., Hsu, L., & Huang, C. (2015). Investigating information sharing behaviour: The mediating roles of the desire to share information in virtual communities. Information Systems and e-Business Management, 14(2), 187–216. https://doi.org/10.1007/s10257-015-0279-2
  42. Luo, C., Chen, A., Cui, B., & Liao, W. (2021). Exploring public perceptions of the COVID-19 vaccine online from a cultural perspective: Semantic network analysis of two social media platforms in the United States and China. Telematics and Informatics, 65, Article 101712. https://doi.org/10.1016/j.tele.2021.101712
  43. Malik, A. N., Hiekkanen, K., Dhir, A., & Nieminen, M. (2016). Impact of privacy, trust and user activity on intentions to share Facebook photos. Journal of Information, Communication and Ethics in Society, 14(4), 364–382. https://doi.org/10.1108/jices-06-2015-0022
  44. Martínez, F. J., López, Anaya-Sánchez, R., Giordano, M. F., & López-López, D. (2020). Behind influencer marketing: Key marketing decisions and their effects on followers’ responses. Journal of Marketing Management, 36(7-8), 579–607. https://doi.org/10.1080/0267257x.2020.1738525
  45. Mayerl, J., & Best, H. (2019). Attitudes and behavioral intentions to protect the environment: How consistent is the structure of environmental concern in cross-national comparison? International Journal of Sociology, 49(1), 27–52. https://doi.org/10.1080/00207659.2018.1560980
  46. Minton, A. P., & Rose, R. L. (1997). The effects of environmental concern on environmentally friendly consumer Behaviour: An exploratory study. Journal of Business Research, 40(1), 37–48. https://doi.org/10.1016/s0148-2963(96)00209-3
  47. National Climate Change Adaptation Strategy 2035. (2022). National climate change adaptation strategy 2035. The Central People’ Government of the People’s Republic of China. http://big5.www.gov.cn/gate/big5/www.gov.cn/zhengce/zhengceku/2022-06/14/5695555/files/9ce4e0a942ff4000a8a68b84b2fd791b.pdf
  48. Paul, J., Modi, A., & Patel, J. D. (2016). Predicting green product consumption using theory of planned behaviour and reasoned action. Journal of Retailing and Consumer Services, 29, 123–134. https://doi.org/10.1016/j.jretconser.2015.11.006
  49. Pop, R., Săplăcan, Z., Dabija, D., & Alt, M. (2021). The impact of social media influencers on travel decisions: the role of trust in consumer decision journey. Current Issues in Tourism, 25(5), 823–843. https://doi.org/10.1080/13683500.2021.1895729
  50. Purwanto, A., & Sudargini, Y. (2021). Partial least squares structural equation modeling (PLS-SEM) analysis for social and management research: A literature review. Journal of Industrial Engineering & Management Research, 2(4), 114–123.
  51. Qi, X., Yu, H., & Ploeger, A. (2020). Exploring influential factors including COVID-19 on green food purchase intentions and the intention-behaviour gap: A qualitative study among consumers in a Chinese context. International Journal of Environmental Research and Public Health, 17(19), Article 7106. https://doi.org/10.3390/ijerph17197106
  52. Ramísio, P. J., Pinto, L., Gouveia, N. D., Alves, A. C., & Arezes, D. (2019). Sustainability strategy in higher education institutions: Lessons learned from a nine-year case study. Journal of Cleaner Production, 222, 300–309. https://doi.org/10.1016/j.jclepro.2019.02.257
  53. Rasool, F., & Ogunbode, C. A. (2015). Socio-demographic differences in environmental concern and willingness to pay for addressing global climate change in Pakistan. Asian Journal of Social Science, 43(3), 273–298. https://doi.org/10.1163/15685314-04303004
  54. Rees, J., & Bamberg, S. (2014). Climate protection needs societal change: Determinants of intention to participate in collective climate action. European Journal of Social Psychology, 44(5), 466–473. https://doi.org/10.1002/ejsp.2032
  55. Saari, U. A., Damberg, S., Frömbling, L., & Ringle, C. M. (2021). Sustainable consumption behaviour of Europeans: The influence of environmental knowledge and risk perception on environmental concern and behavioral intention. Ecological Economics, 189, Article 107155. https://doi.org/10.1016/j.ecolecon.2021.107155
  56. Said, N., Frauhammer, L. T., & Huff, M. (2023). Consensus messaging in climate change communication: Metacognition as moderator variable in the gateway belief model. Environmental Psychology. https://doi.org/10.31234/osf.io/bwksd
  57. Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4–11. https://doi.org/10.12691/ajams-9-1-2
  58. Sideridis, G. D., Saddaawi, A., & Al-Harbi, K. (2018). Internal consistency reliability in measurement: Aggregate and multilevel approaches. Journal of Modern Applied Statistical Methods, 17(1). https://doi.org/10.22237/jmasm/1530027194
  59. Singh, S., & Sagar, R. (2021). A critical look at online survey or questionnaire-based research studies during COVID-19. Asian Journal of Psychiatry, 65, Article 102850. https://doi.org/10.1016/j.ajp.2021.102850
  60. Suharini, E., Supriyadi, S., Syifauddin, M., Al-Hanif, E. T., Kurniawan, T. A., & Nugraha, S. B. (2023). An evaluation of community adoption of the INARISK BNPB platform for disaster management: An application of the technology acceptance model (TAM). International Journal of Safety and Security Engineering, 13(4), 673–684. https://doi.org/10.18280/ijsse.130409
  61. Tandoc, E. C., & Eng, N. (2017). Climate change communication on Facebook, Twitter, Sina Weibo, and other social media platforms. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.361
  62. Trott, C. D. (2021). What difference does it make? Exploring the transformative potential of everyday climate crisis activism by children and youth. Children’s Geographies, 19(3), 300–308. https://doi.org/10.1080/14733285.2020.1870663
  63. Wielk, E. G., & Standlee, A. (2021). Fighting for their future: An exploratory study of online community building in the youth climate change movement. Qualitative Sociology Review, 17(2), 22–37. https://doi.org/10.18778/1733-8077.17.2.02
  64. Xia, Y. (2022). Farmers’ trust in government and participation intention toward rural tourism through TAM: The moderation effect of perceived risk. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1023280
  65. Xu, L., Zhang, R., Liu, M., Han, C., Liu, F., Hou, G., & Li, S. (2023). Promoting low-carbon behaviours through increased media exposure of carbon peak and carbon neutrality: Low-carbon awareness as a mediator. Social Behaviour and Personality, 51(7), 1–11. https://doi.org/10.2224/sbp.12467
  66. Yossatorn, Y., Binali, T., Weng, C., & Chu, R. J. (2023). Investigating the relationships among LINE users’ concerns, motivations for information sharing intention and information sharing behaviour. SAGE Open, 13(3). https://doi.org/10.1177/21582440231192951
  67. Zha, Y. (2023). How Chinese online media users respond to carbon neutrality: A quantitative textual analysis of comments on BiliBili, a Chinese video sharing platform. Asian Journal for Public Opinion Research, 11(2), 145–162. https://doi.org/10.15206/ajpor.2023.11.2.145
  68. Zheng, S., Huang, G., Zhou, X., & Zhu, X. (2020). Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China. Applied Energy, 261, Article 114295. https://doi.org/10.1016/j.apenergy.2019.114295
  69. Zhou, F., & Zhou, X. (2022). “Across time and space, I am together with many, many others”: Digital writing and temporality on Chinese social media. Social Media + Society, 8(3). https://doi.org/10.1177/20563051221117564