Research Article

Characterizing gender stereotypes in popular fiction: A machine learning approach

Chengyue Zhang 1 * , Ben Wu 2
More Detail
1 Phillips Exeter Academy, Exeter, NH, USA2 University of California, Riverside, CA, USA* Corresponding Author
Online Journal of Communication and Media Technologies, 13(4), October 2023, e202349, https://doi.org/10.30935/ojcmt/13644
Published Online: 07 September 2023, Published: 01 October 2023
OPEN ACCESS   1710 Views   1205 Downloads
Download Full Text (PDF)

ABSTRACT

Gender representation portrayed in popular mass media is known to reflect and reinforce societal gender stereotypes. This research uses two methods of natural language processing–Word2Vec and bidirectional encoder representations from transformers (BERT) model–to analyze gender representation in popular fiction and quantify gender bias with gender bias score. Word2Vec, which represents the words in vectorized format, can capture implicit human gender bias with the geometry relationship between word vectors. BERT, a newer pre-trained deep learning model, is specialized in understanding words in the larger context it appears in. The research will compare the results obtained from Word2Vec and BERT. With book check out records from the Seattle Public Library checkout dataset–an ongoing open source dataset from the public library system of Seattle, WA–the research aims to identify evolutionary trends of gender bias in popular fiction and analyze consumer preferences regarding gender representation.

CITATION (APA)

Zhang, C., & Wu, B. (2023). Characterizing gender stereotypes in popular fiction: A machine learning approach. Online Journal of Communication and Media Technologies, 13(4), e202349. https://doi.org/10.30935/ojcmt/13644

REFERENCES

  1. Abbott, T. B. (2013). The trans/romance dilemma in Transamerica and other films. The Journal of American Culture, 36(1), 32-41. https://doi.org/10.1111/jacc.12011
  2. Adichie, C. N. (2009). The danger of a single story. TED. https://www.ted.com/talks/chimamanda_adichie_the_danger_of_a_single_story
  3. Amossy, R., & Heidingsfeld, T. (1984). Stereotypes and representation in fiction. Poetics Today, 5(4), 689-700. https://doi.org/10.2307/1772256
  4. Asr, F. T., Mazraeh, M., Lopes, A., Gautam, V., Gonzales, J., Rao, P., & Taboada, M. (2021). The gender gap tracker: Using natural language processing to measure gender bias in media. PLoS ONE, 16(1), 1-28. https://doi.org/10.1371/journal.pone.0245533
  5. Atwood, M. (2017). Margaret Atwood on what ‘The handmaid’s tale’means in the age of Trump. The New York Times. https://www.nytimes.com/2017/03/10/books/review/margaret-atwood-handmaids-tale-age-of-trump.html
  6. Babaeianjelodar, M., Lorenz, S., Gordon, J., Matthews, J., & Freitag, E. (2020). Quantifying gender bias in different corpora. In Proceedings of the Companion Web Conference 2020. https://doi.org/10.1145/3366424.3383559
  7. Bamman, D., Eisenstein, J., & Schnoebelen, T. (2014). Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2), 135-160. https://doi.org/10.1111/josl.12080
  8. Bamman, D., Underwood, T., & Smith, N. A. (2014). A Bayesian mixed effects model of literary character. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 370-379). https://doi.org/10.3115/v1/P14-1035
  9. Baran, R. A. (2013). Re-interpretation of library program: The Seattle Public Library [Master’s thesis, Middle East Technical University].
  10. Basta, C., Costa-Jussà, M. R., & Casas, N. (2019). Evaluating the underlying gender bias in contextualized word embeddings. ArXiv,1904.08783. https://doi.org/10.18653/v1/W19-3805
  11. Beauchamp, G. (2009). The politics of The handmaid’s tale. The Midwest Quarterly, 51(1).
  12. Beltrán, M. (2018). Representation. In M. Kackman, & M. C. Kearney (Eds.), The craft of criticism: Critical media studies in practice (pp. 94-106). Routledge. https://doi.org/10.4324/9781315879970-9
  13. Betti, L., Abrate, C., & Kaltenbrunner, A. (2023). Large scale analysis of gender bias and sexism in song lyrics. EPJ Data Science, 12, 10. https://doi.org/10.1140/epjds/s13688-023-00384-8
  14. Beukeboom, C., & Burgers, C. (2019). How stereotypes are shared through language: A review and introduction of the social categories and stereotypes communication (SCSC) framework. Review of Communication Research, 7. https://doi.org/10.12840/issn.2255-4165.017
  15. Bleich, E., Bloemraad, I., & De Graauw, E. (2015). Migrants, minorities and the media: Information, representations and participation in the public sphere. Journal of Ethnic and Migration Studies, 41(6), 857-873. https://doi.org/10.1080/1369183X.2014.1002197
  16. Blodgett, S. L., Barocas, S., Daumé III, H., & Wallach, H. (2020). Language (technology) is power: A critical survey of “bias” in NLP. ArXiv, 2005.14050. https://doi.org/10.18653/v1/2020.acl-main.485
  17. Boghrati, R., & Berger, J. (2023). Quantifying cultural change: Gender bias in music. Journal of Experimental Psychology: General, 152(9), 2591-2602. https://doi.org/10.1037/xge0001412
  18. Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. ArXiv:1607.06520.
  19. Bonomi, A. E., Altenburger, L. E., & Walton, N. L. (2013). “Double crap!” abuse and harmed identity in fifty shades of grey. Journal of Women’s Health, 22(9), 733-744. https://doi.org/10.1089/jwh.2013.4344
  20. Booker, M. K., & Clapper, T. H. (1995). Review of the dystopian impulse in modern literature: Fiction as social criticism. Utopian Studies, 6(2), 147-149.
  21. Brooks, D. E., & Hébert, L. P. (2006). Gender, race, and media representation. Handbook of Gender and Communication, 16, 297-317. https://doi.org/10.4135/9781412976053.n16
  22. Burns, K., Hendricks, L. A., Saenko, K., Darrell, T., & Rohrbach, A. (2019). Women also snowboard: Overcoming bias in captioning models. arXiv.org. https://arxiv.org/abs/1803.09797
  23. Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. https://doi.org/10.1126/science.aal4230
  24. Castañeda, M. (2018). The power of (mis)representation: Why racial and ethnic stereotypes in the media matter. Challenging Inequalities: Readings in Race, Ethnicity, and Immigration, 60.
  25. Chapman, B. V., Rooney, M. K., Ludmir, E. B., De La Cruz, D., Salcedo, A., Pinnix, C. C., Das, P., Jagsi, R., Thomas Jr, C. R., & Holliday, E. B. (2020). Linguistic biases in letters of recommendation for radiation oncology residency applicants from 2015 to 2019. Journal of Cancer Education, 37(4), 965-972. https://doi.org/10.1007/s13187-020-01907-x
  26. Charlesworth, T. E. S., Yang, V., Mann, T. C., Kurdi, B., & Banaji, M. R. (2021). Gender stereotypes in natural language: Word embeddings show robust consistency across child and adult language corpora of more than 65 million words. Psychological Science, 32(2), 218-240. https://doi.org/10.1177/0956797620963619
  27. Chen, Y., Mahoney, C., Grasso, I., Wali, E., Matthews, A., Middleton, T., Njie, M., & Matthews, J. (2021). Gender bias and under-representation in natural language processing across human languages. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3461702.3462530
  28. Clement, M., Fabel, S., & Schmidt-Stolting, C. (2006). Diffusion of hedonic goods: A literature review. International Journal on Media Management, 8(4), 155-163. https://doi.org/10.1207/s14241250ijmm0804_1
  29. Costa-Jussà, M. R. (2019). An analysis of gender bias studies in natural language processing. Nature Machine Intelligence, 1, 495-496. https://doi.org/10.1038/s42256-019-0105-5
  30. Crabb, P. B., & Bielawski, D. (1994). The social representation of material culture and gender in children’s books. Sex Roles, 30, 69-79. https://doi.org/10.1007/BF01420740
  31. Dahlgren, P. (2000). Television and the public sphere: Citizenship, democracy and the media. In SAGE knowledge. SAGE. https://doi.org/10.4135/9781446250617
  32. Dai, A. M., Olah, C., & Le, Q. V. (2015). Document embedding with paragraph vectors. ArXiv:1507.07998. https://arxiv.org/abs/1507.07998
  33. Delgado-Rodriguez, M., & Llorca, J. (2004). Bias. Journal of Epidemiology & Community Health, 58(8), 635-641. https://doi.org/10.1136/jech.2003.008466
  34. Delobelle, P., Tokpo, E. K., Calders, T., & Berendt, B. (2021). Measuring fairness with biased rulers: A survey on quantifying biases in pretrained language models. arXiv, 2112.07447. https://doi.org/10.18653/v1/2022.naacl-main.122
  35. Dev, S., Monajatipoor, M., Ovalle, A., Subramonian, A., Phillips, J. M., & Chang, K.-W. (2021). Harms of gender exclusivity and challenges in non-binary representation in language technologies. ArXiv, 2108.12084. https://doi.org/10.18653/v1/2021.emnlp-main.150
  36. Devinney, H., Björklund, J., & Björklund, H. (2022). Theories of “gender” in NLP bias research. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 2083-2102). https://doi.org/10.1145/3531146.3534627
  37. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv, 1810.04805.
  38. Dhingra, B., Liu, H., Salakhutdinov, R., & Cohen, W. W. (2017). A comparative study of word embeddings for reading comprehension. arXiv, 1703.00993.
  39. Dixon-Fyle, S., Dolan, K., Hunt, V., & Prince, S. (2020). Diversity wins: How inclusion matters. www.mckinsey.com. https://www.mckinsey.com/featured-insights/diversity-and-inclusion/diversity-wins-how-inclusion-matters
  40. Dolci, T. (2022). Fine-tuning language models to mitigate gender bias in sentence encoders. In Proceedings of the IEEE 8th International Conference on Big Data Computing Service and Applications (pp. 175-176). https://doi.org/10.1109/BigDataService55688.2022.00036
  41. Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., & Tang, J. (2021). All NLP tasks are generation tasks: A general pretraining framework. ArXiv, 2103.10360. https://arxiv.org/abs/2103.10360
  42. Fast, E., Vachovsky, T., & Bernstein, M. S. (2016). Shirtless and dangerous: Quantifying linguistic signals of gender bias in an online fiction writing community. ArXiv, 1603.08832. https://arxiv.org/abs/1603.08832
  43. Fiske, S. T. (1993). Controlling other people: The impact of power on stereotyping. American Psychologist, 48(6), 621-628. https://doi.org/10.1037/0003-066x.48.6.621
  44. Friedman, S., Schmer-Galunder, S., Chen, A., & Rye, J. (2019). Relating word embedding gender biases to gender gaps: A cross-cultural analysis. Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-3803
  45. Fryberg, S. A., Markus, H. R., Oyserman, D., & Stone, J. M. (2008). Of warrior chiefs and Indian princesses: The psychological consequences of American Indian mascots. Basic and Applied Social Psychology, 30(3), 208-218. https://doi.org/10.1080/01973530802375003
  46. Fürsich, E. (2010). Media and the representation of others. International Social Science Journal, 61(199), 113-130. https://doi.org/10.1111/j.1468-2451.2010.01751.x
  47. Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644. https://doi.org/10.1073/pnas.1720347115
  48. Glick, P., & Fiske, S. T. (2011). Ambivalent sexism revisited. Psychology of Women Quarterly, 35(3), 530-535. https://doi.org/10.1177/0361684311414832
  49. Goldfarb-Tarrant, S., Marchant, R., Sánchez, R. M., Pandya, M., & Lopez, A. (2020). Intrinsic bias metrics do not correlate with application bias. arXiv, 2012.15859.
  50. Green, M. C., Garst, J., & Brock, T. C. (2003). The power of fiction: Determinants and boundaries. In L. J. Shrum (Ed.), The psychology of entertainment media. Erlbaum Psych Press.
  51. Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at skip-gram modelling. European Language Resources Association.
  52. Hagiwara, N., Slatcher, R. B., Eggly, S., & Penner, L. A. (2017). Physician racial bias and word use during racially discordant medical interactions. Health Communication, 32(4), 401-408. https://doi.org/10.1080/10410236.2016.1138389
  53. Hall, S. (1997). Culture and power. Radical Philosophy, 86(27), 24-41. https://doi.org/10.1177/004839319702700102
  54. Hamilton, M. C., Anderson, D., Broaddus, M., & Young, K. (2006). Gender stereotyping and under-representation of female characters in 200 popular children’s picture books: A twenty-first century update. Sex Roles, 55(11-12), 757-765. https://doi.org/10.1007/s11199-006-9128-6
  55. Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2018). Diachronic word embeddings reveal statistical laws of semantic change. ArXiv, 1605.09096. https://arxiv.org/abs/1605.09096
  56. Hanne, M. (1994). The power of the story: Fiction and political change. Berghahn Books.
  57. Harrington, C. (2021). What is ‘toxic masculinity’ and why does it matter? Men and Masculinities, 24(2), 345-352. https://doi.org/10.1177/1097184X20943254
  58. Hovy, D., & Prabhumoye, S. (2021). Five sources of bias in natural language processing. Language and Linguistics Compass, 15(8), e12432. https://doi.org/10.1111/lnc3.12432
  59. Huang, G., Li, K., & Li, H. (2019). Show, not tell: The contingency role of infographics versus text in the differential effects of message strategies on optimistic bias. Science Communication, 41(6), 732-760. https://doi.org/10.1177/1075547019888659
  60. Hubler, A. E. (2000). Beyond the image: Adolescent girls, reading, and social reality. NWSA Journal, 12(1), 84-99. https://doi.org/10.2979/NWS.2000.12.1.84
  61. James, S. E., Herman, J., Keisling, M., Mottet, L., & Anafi, M. (2019). 2015 U.S. transgender survey (USTS). https://www.icpsr.umich.edu/web/RCMD/studies/37229
  62. Johnson, D. R., Huffman, B. L., & Jasper, D. M. (2014). Changing race boundary perception by reading narrative fiction. Basic and Applied Social Psychology, 36(1), 83-90. https://doi.org/10.1080/01973533.2013.856791
  63. Johnson, R. (2008). Assessment of bias with emphasis on method comparison. The Clinical Biochemist. Reviews, 29(Suppl 1), S37-S42.
  64. Kahn, J. H., Tobin, R. M., Massey, A. E., & Anderson, J. A. (2007). Measuring emotional expression with the linguistic inquiry and word count. The American Journal of Psychology, 120(2), 263-286. https://doi.org/10.2307/20445398
  65. Kearl, H. (2014). Unsafe and harassed in public spaces: A national street harassment report. ncvc.dspacedirect.org. https://ncvc.dspacedirect.org/handle/20.500.11990/479
  66. Khadilkar, K., KhudaBukhsh, A. R., & Mitchell, T. M. (2022). Gender bias, social bias, and representation in Bollywood and Hollywood. Patterns, 3(4), 100486. https://doi.org/10.1016/j.patter.2022.100486
  67. Khan, U., Dhar, R., & Wertenbroch, K. (2005). A behavioral decision theory perspective on hedonic and utilitarian choice. In D. Mick, & S. Ratneshwar (Eds.), Inside consumption: Consumer motives, goals, and desires. Routledge.
  68. Kidd, M. A. (2016). Archetypes, stereotypes and media representation in a multi-cultural society. Procedia-Social and Behavioral Sciences, 236, 25-28. https://doi.org/10.1016/j.sbspro.2016.12.007
  69. Kraicer, E., & Piper, A. (2019). Social characters: The hierarchy of gender in contemporary English-language fiction. Journal of Cultural Analytics, 3(2). https://doi.org/10.22148/16.032
  70. Kupers, T. A. (2005). Toxic masculinity as a barrier to mental health treatment in prison. Journal of Clinical Psychology, 61(6), 713-724. https://doi.org/10.1002/jclp.20105
  71. Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document distances. proceedings.mlr.press. https://proceedings.mlr.press/v37/kusnerb15.html
  72. Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5-14. https://doi.org/10.1109/MIS.2016.45
  73. Lai, Y. A., Lalwani, G., & Zhang, Y. (2020). Context analysis for pre-trained masked language models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 3789-3804). https://doi.org/10.18653/v1/2020.findings-emnlp.338
  74. Larson, B. (2017). Gender as a variable in natural-language processing: Ethical considerations. Association for Computational Linguistics. https://doi.org/10.18653/v1/W17-1601
  75. Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. ArXiv, 1607.05368. https://doi.org/10.18653/v1/W16-1609
  76. Lauscher, A., Crowley, A., & Hovy, D. (2022). Welcome to the modern world of pronouns: Identity-inclusive natural language processing beyond gender. ArXiv, 2202.11923. https://arxiv.org/abs/2202.11923
  77. Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the International Conference on Machine Learning (pp. 1188-1196). PMLR.
  78. Leavitt, P. A., Covarrubias, R., Perez, Y. A., & Fryberg, S. A. (2015). “Frozen in time”: The impact of native American media representations on identity and self-understanding. Journal of Social Issues, 71(1), 39-53. https://doi.org/10.1111/josi.12095
  79. Li, S., Fant, A. L., McCarthy, D. M., Miller, D., Craig, J., & Kontrick, A. (2017). Gender differences in language of standardized letter of evaluation narratives for emergency medicine residency applicants. AEM Education and Training, 1(4), 334-339. https://doi.org/10.1002/aet2.10057
  80. Lu, K., Mardziel, P., Wu, F., Amancharla, P., & Datta, A. (2020). Gender bias in neural natural language processing. Logic, Language, and Security, 12300, 189-202. https://doi.org/10.1007/978-3-030-62077-6_14
  81. Madaan, N., Mehta, S., Agrawaal, T. S., Malhotra, V., Aggarwal, A., Gupta, Y., & Saxena, M. (2018). Analyze, detect and remove gender stereotyping from Bollywood movies. In S. A. Friedler, & C. Wilson (Eds.), Proceedings of the Conference on Fairness, Accountability and Transparency (pp. 92-105). PMLR.
  82. Madanikia, Y., & Bartholomew, K. (2014). Themes of lust and love in popular music lyrics from 1971 to 2011. SAGE Open, 4(3), 2158244014547179. https://doi.org/10.1177/2158244014547179
  83. Manzini, T., Lim, Y. C., Tsvetkov, Y., & Black, A. W. (2019). Black is to criminal as Caucasian is to police: Detecting and removing multiclass bias in word embeddings. ArXiv, 1904.04047. https://doi.org/10.18653/v1/N19-1062
  84. Mar, R. A. , & Oatley, K. (2008). The function of fiction is the abstraction and simulation of social experience . Perspectives on Psychological Science, 3 , 173-192 . https://doi.org/10.1111/j.1745–6924. 2008.00073.x
  85. Matsuno, E., & Budge, S. L. (2017). Non-binary/genderqueer identities: A critical review of the literature. Current Sexual Health Reports, 9(3), 116-120. https://doi.org/10.1007/s11930-017-0111-8
  86. Matthews, A., Grasso, I., Mahoney, C., Chen, Y., Wali, E., Middleton, T., Njie, M., & Matthews, J. (2021). Gender bias in natural language processing across human languages. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.trustnlp-1.6
  87. Maudslay, R. H., Gonen, H., Cotterell, R., & Teufel, S. (2020). It’s all in the name: Mitigating gender bias with name-based counterfactual data substitution. arXiv.org. https://arxiv.org/abs/1909.00871
  88. McInroy, L. B., & Craig, S. L. (2016). Perspectives of LGBTQ emerging adults on the depiction and impact of LGBTQ media representation. Journal of Youth Studies, 20(1), 32-46. https://doi.org/10.1080/13676261.2016.1184243
  89. McLaren, J. T., Bryant, S., & Brown, B. (2021). “See me! Recognize me!” An analysis of transgender media representation. Communication Quarterly, 69(2), 172-191. https://doi.org/10.1080/01463373.2021.1901759
  90. Merchant, A., Rahimtoroghi, E., Pavlick, E., & Tenney, I. (2020). What happens to BERT embeddings during fine-tuning? arXiv, 2004.14448. https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
  91. Merrick, H. (2012). Challenging implicit gender bias in science: Positive representations of female scientists in fiction. Journal of Community Positive Practices, 12(4), 744-768.
  92. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. ArXiv.org. https://arxiv.org/abs/1301.3781
  93. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. ArXiv.org. https://arxiv.org/abs/1310.4546
  94. Muhammed, M. (2020). Sexism in Wilde’s the picture of Dorian Gray: Linguistic analysis. Journal of Tikrit University for Humanities, 27(3), 11-26. https://doi.org/10.25130/jtuh.27.3.2020.24
  95. Nadeem, M., Bethke, A., & Reddy, S. (2020). StereoSet: Measuring stereotypical bias in pretrained language models. arXiv, 2004.09456.
  96. Nozza, D., Bianchi, F., & Hovy, D. (2022). Pipelines for social bias testing of large language models. In Proceedings of BigScience Episode# 5--Workshop on Challenges & Perspectives in Creating Large Language Models. Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.bigscience-1.6
  97. Ochieng, D. (2012). Sexism in language: Do fiction writers assign agentive and patient roles equally to male and female characters? Journal of Language and Linguistic Studies, 8(2), 0-47.
  98. Olson, D. (2012). From utterance to text: The bias of language in speech and writing. Harvard Educational Review, 47(3), 257-281. https://doi.org/10.17763/haer.47.3.8840364413869005
  99. Otterbacher, J. (2015). Crowdsourcing stereotypes: Linguistic bias in metadata generated via GWAP. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1955-1964). https://doi.org/10.1145/2702123.2702151
  100. Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Lawrence Erlbaum Associates.
  101. Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162
  102. Phillips, J. (2006). Introduction. In Transgender on screen. Palgrave Macmillan. https://doi.org/10.1057/9780230596337_1
  103. Rajendran, L., & Thesinghraja, P. (2014). The impact of new media on traditional media. Middle-East Journal of Scientific Research, 22(4), 609-616.
  104. Rey, V. (2020). The art of minorities: Cultural representation in museums of the Middle East and North Africa. Edinburgh University Press. https://doi.org/10.3366/edinburgh/9781474443760.001.0001
  105. Rezaeinia, S. M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment analysis based on improved pre-trained word embeddings. Expert Systems With Applications, 117, 139-147. https://doi.org/10.1016/j.eswa.2018.08.044
  106. Richards, C., Bouman, W. P., Seal, L., Barker, M. J., Nieder, T. O., & T’Sjoen, G. (2016). Non-binary or genderqueer genders. International Review of Psychiatry, 28(1), 95-102. https://doi.org/10.3109/09540261.2015.1106446
  107. Said, E. W. (2016). Orientalism. In Social theory re-wired. Routledge.
  108. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
  109. Schramowski, P., Turan, C., Andersen, N., Rothkopf, C. A., & Kersting, K. (2022). Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3), 258-268. https://doi.org/10.1038/s42256-022-00458-8
  110. Sculos, B. W. (2017). Who’s afraid of ‘toxic masculinity’? Class Race Corporate Power, 5(3), 6. https://doi.org/10.25148/CRCP.5.3.006517
  111. Shrum, L. J. (2009). Media consumption and perceptions of social reality: Effects and underlying processes. In J. Bryant and M. B. Oliver (Eds.), Media effects: Advances in theory and research (pp. 50-73). Routledge.
  112. Smelik, A. (2007). Feminist film theory. In The cinema book (pp. 491-504). https://doi.org/10.5040/9781838710484.0065
  113. Smiler, A. P., Shewmaker, J. W., & Hearon, B. (2017). From “I want to hold your hand” to “promiscuous”: Sexual stereotypes in popular music lyrics, 1960-2008. Sexuality & Culture, 21(4), 1083-1105. https://doi.org/10.1007/s12119-017-9437-7
  114. Smith, S. L., & Granados, A. D. (2009). Content patterns and effects surrounding sex-role stereotyping on television and films. In J. Bryant and M. B. Oliver (Eds.), Media effects: Advances in theory and research (pp. 342-361). Routledge.
  115. Stanczak, K., & Augenstein, I. (2021). A survey on gender bias in natural language processing. ArXiv, 2112.14168. https://doi.org/10.48550/arXiv.2112.14168
  116. Stillman, P. G., & Johnson, S. A. (1994). Identity, complicity, and resistance in The handmaid’s tale. Utopian Studies, 5(2), 70-86.
  117. Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text classification? In Proceedings of the Chinese Computational Linguistics: 18th China National Conference (pp. 194-206). Springer. https://doi.org/10.1007/978-3-030-32381-3_16
  118. Sun, T., Gaut, A., Tang, S., Huang, Y., ElSherief, M., Zhao, J., Mirza, D., Belding, E., Chang, K.-W., & Wang, W. Y. (2019). Mitigating gender bias in natural language processing: Literature review. Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1159
  119. Sun, T., Liu, X., Qiu, X., & Huang, X. (2022). Paradigm shift in natural language processing. Machine Intelligence Research, 19(3), 169-183. https://doi.org/10.1007/s11633-022-1331-6
  120. Sun, T., Webster, K., Shah, A., Wang, W. Y., & Johnson, M. (2021). They, them, theirs: Rewriting with gender-neutral English. ArXiv, 2102.06788. https://arxiv.org/abs/2102.06788
  121. Sutton, A., Lansdall-Welfare, T., & Cristianini, N. (2018). Biased embeddings from wild data: Measuring, understanding and removing. In Proceedings of the 17th International Symposium IDA (pp. 328-339). Springer. https://doi.org/10.1007/978-3-030-01768-2_27
  122. Thomas, D. C., Lawlor, D. A., & Thompson, J. R. (2007). Re: Estimation of bias in nongenetic observational studies using “mendelian triangulation” by Bautista et al. Annals of Epidemiology, 17(7), 511-513. https://doi.org/10.1016/j.annepidem.2006.12.005
  123. Underwood, T., Bamman, D., & Lee, S. (2018). The transformation of gender in English-language fiction. Journal of Cultural Analytics, 3(2). https://doi.org/10.22148/16.019
  124. Van Reenen, D. (2014). Is this really what women want? An analysis of fifty shades of grey and modern feminist thought. South African Journal of Philosophy, 33(2), 223-233. https://doi.org/10.1080/02580136.2014.925730
  125. Vijay, D. (2019). Crazy rich Asians: Exploring discourses of orientalism, neoliberal feminism, privilege and inequality. Markets, Globalization & Development Review, 4(3). https://doi.org/10.23860/mgdr-2019-04-03-04
  126. Wagner, C., Garcia, D., Jadidi, M., & Strohmaier, M. (2015). It’s a man’s Wikipedia? Assessing gender inequality in an online encyclopedia. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 454-463). https://doi.org/10.1609/icwsm.v9i1.14628
  127. Waisbord, S. (2004). Media and the reinvention of the nation. In The SAGE handbook of media studies. SAGE. https://doi.org/10.4135/9781412976077.n19
  128. Wang, B., Wang, A., Chen, F., Wang, Y., & Kuo, C.-C. . J. (2019). Evaluating word embedding models: Methods and experimental results. APSIPA Transactions on Signal and Information Processing, 8. https://doi.org/10.1017/ATSIP.2019.12
  129. West, J. B. (2010). Gender bias and stereotypes in young adult literature: A content analysis of novels for middle school students [Master’s thesis, University of North Carolina at Chapel Hill].
  130. Wu, L., Yen, I. E. H., Xu, K., Xu, F., Balakrishnan, A., Chen, P.-Y., Ravikumar, P., & Witbrock, M. J. (2018). Word mover’s embedding: From Word2Vec to document embedding. ArXiv, 1811.01713. https://doi.org/10.18653/v1/D18-1482
  131. Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., & Hu, X. (2023). Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. arXiv, 2304.13712.
  132. Zastrow, C., Kirst-Ashman, K. K., & Hessenauer, S. L. (2019). Empowerment series: Understanding human behavior and the social environment. Cengage Learning.
  133. Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Systems With Applications, 38(3), 2758-2765. https://doi.org/10.1016/j.eswa.2010.08.066
  134. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2017). Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2979-2989). https://doi.org/10.18653/v1/d17-1323
  135. Zhao, Y. (2019). Crazy rich Asians: When representation becomes controversial. Markets, Globalization & Development Review, 4(3). https://doi.org/10.23860/mgdr-2019-04-03-03
  136. Zhou, Y., & Srikumar, V. (2021). A closer look at how fine-tuning changes BERT. arXiv, 2106.14282. https://doi.org/10.18653/v1/2022.acl-long.75
  137. Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring AI ethics of ChatGPT: A diagnostic analysis. arXiv, 2301.12867.