Research Article

Artificial intelligence dependence in academic tasks: Design and validation of the SAID questionnaire

Raul Alberto Garcia Castro 1 * , William Maximo Bartesaghi Aste 1 , Jose Luis Morales Quezada 2 , Lupita Esmeralda Arocutipa Huanacuni 1
More Detail
1 Department of Natural Science Education, National University Jorge Basadre Grohmann, Tacna, PERU2 Private University of Tacna, Tacna, PERU* Corresponding Author
Online Journal of Communication and Media Technologies, 15(4), October 2025, e202529, https://doi.org/10.30935/ojcmt/17303
Published: 18 October 2025
OPEN ACCESS   1621 Views   2587 Downloads
Download Full Text (PDF)

ABSTRACT

Artificial intelligence (AI) is transforming the educational system by providing new learning opportunities; however, it also presents challenges such as teacher adaptation, the digital divide, data ethics, depersonalization, and technological dependence. This study addresses the need to assess AI dependence among secondary education students through the construction and validation of the SAID questionnaire. A mixed-methods approach with a sequential design was employed, applying the instrument to 370 students across eight educational institutions in Tacna, Peru. In the qualitative phase, the components of the construct were identified, while in the quantitative phase, the psychometric properties of the questionnaire were evaluated. Exploratory factor analysis and confirmatory factor analysis, along with reliability testing, demonstrated that the SAID questionnaire is a valid and reliable tool. It captured three key dimensions: “informative exclusivity with AI,” “trust in AI,” and “AI literacy.” The questionnaire provides robust empirical evidence of an emerging construct that, based on students’ perceptions, enables the assessment of AI dependence in academic settings. It serves as a valuable resource for exploring long-term implications and developing educational strategies to mitigate the negative effects of AI. The conscious and critical integration of AI in education is essential to ensure that these technologies function as supportive tools rather than substitutes for independent learning.

CITATION (APA)

Garcia Castro, R. A., Bartesaghi Aste, W. M., Morales Quezada, J. L., & Arocutipa Huanacuni, L. E. (2025). Artificial intelligence dependence in academic tasks: Design and validation of the SAID questionnaire. Online Journal of Communication and Media Technologies, 15(4), e202529. https://doi.org/10.30935/ojcmt/17303

REFERENCES

  1. Adiguzel, T., Kaya, M., & Cansu, F. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3), Article ep429. https://doi.org/10.30935/cedtech/13152
  2. Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, S. (2012). Development of a Facebook addiction scale. Psychological Reports, 110(2), 501–517. https://doi.org/10.2466/02.09.18.PR0.110.2.501-517
  3. Bartlett, M. S. (1951). A further note on tests of significance in factor analysis. British Journal of Psychology, 4, 1–2. https://doi.org/10.1111/j.2044-8317.1951.tb00299.x
  4. Bryman, A. (2016). Social research methods (5th ed.). Oxford University Press.
  5. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  6. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
  7. Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research & Evaluation, 10(1), Article 7. https://doi.org/10.7275/jyj1-4868
  8. Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches. SAGE.
  9. Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  10. Davis, R. A., Flett, G. L., & Besser, A. (2004). Validation of a new scale for measuring problematic internet use: Implications for pre-employment screening. CyberPsychology & Behavior, 5(4). https://doi.org/10.1089/109493102760275581
  11. Deckker, D., & Sumanasekara, S. (2025). A systematic review of the impact of artificial intelligence, digital technology, and social media on cognitive functions. International Journal of Research and Innovation in Social Science, 9(3), 134–154. https://doi.org/10.47772/IJRISS.2025.90300011
  12. Deng, X., & Yu, Z. (2023). A meta-analysis and systematic review of the effect of chatbot technology use in sustainable education. Sustainability, 15(4), Article 2940. https://doi.org/10.3390/su15042940
  13. Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE.
  14. Garcia, R. A., Mayta, N. A., Bartesaghi, W. M., & Llapa, M. P. (2024). Exploration of ChatGPT in basic education: Advantages, disadvantages, and its impact on school tasks. Contemporary Educational Technology, 16(3), Article ep511. https://doi.org/10.30935/cedtech/14615
  15. Gerlich, M. (2025). Herramientas de IA en la sociedad: Impactos en la descarga cognitiva y el futuro del pensamiento crítico [AI tools in society: Impacts on cognitive offloading and the future of critical thinking]. Societies, 15(1), Article 6. https://doi.org/10.3390/soc15010006
  16. Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS-4): A brief measure of general attitude toward artificial intelligence. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1191628
  17. Griffiths, M. (2005). A ‘components’ model of addiction within a biopsychosocial framework. Journal of Substance Use, 10(4), 191–197. https://doi.org/10.1080/14659890500114359
  18. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
  19. Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). SAGE. https://doi.org/10.1007/978-3-030-80519-7
  20. Hamal, O., Faddouli, N., Harouni, M., & Lu, J. (2022). Artificial intelligent in education. Sustainability, 14(5), Article 2862. https://doi.org/10.3390/su14052862
  21. Hemmer, P., Westphal, M., Schemmer, M., Vetter, S., Vossing, M., & Satzger, G. (2023). Human-AI collaboration: The effect of AI delegation on human task performance and task satisfaction. In Proceedings of the 28th International Conference on Intelligent User Interfaces (pp. 453–463). ACM. https://doi.org/10.1145/3581641.3584052
  22. Hu, B., Mao, Y., & Kim, K. J. (2023). How social anxiety leads to problematic use of conversational AI: The roles of loneliness, rumination, and mind perception. Computers in Human Behavior, 145, Article 107760. https://doi.org/10.1016/j.chb.2023.107760
  23. Ilyas, M. (2022). Emerging role of artificial intelligence. Journal of Systemics, Cybernetics and Informatics, 20(6), 58–65. https://doi.org/10.54808/jsci.20.06.58
  24. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
  25. Kaiser, H. F. (1970). A second generation Little Jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
  26. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
  27. Kapus, K., Nyulas, R., Nemeskéri, Z., Zádori, I., Muity, G., Kiss, J., Feher, A., Fejes, É., Tibold, A., & Fehér, G. (2021). Prevalence and risk factors of Internet addiction among Hungarian high school students. International Journal of Environmental Research and Public Health, 18(13), Article 6989. https://doi.org/10.3390/ijerph18136989
  28. Keshishi, N., & Hack, S. (2023). Emotional intelligence in the digital age: Harnessing AI for students’ inner development. Journal of Perspectives in Applied Academic Practice, 11(3), 172–175. https://doi.org/10.56433/jpaap.v11i3.579
  29. Kim, K., Yoon, Y., & Shin, S. (2024). Explainable prediction of problematic smartphone use among South Korea’s children and adolescents using a machine learning approach. International Journal of Medical Informatics, 186, Article 105441. https://doi.org/10.1016/j.ijmedinf.2024.105441
  30. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
  31. Lage, L., Egidio, A., & Spear, A. L. (2023). Digital dependence in organizations: Impacts on the physical and mental health of employees. Clinical Practice and Epidemiology in Mental Health, 19. https://doi.org/10.2174/17450179-v19-e230109-2022-17
  32. Lee-Won, R. J., Herzog, L., & Park, S. G. (2015). Hooked on Facebook: The role of social anxiety and need for social assurance in problematic use of Facebook. Cyberpsychology, Behavior, and Social Networking, 18(10). https://doi.org/10.1089/cyber.2015.0002
  33. Levy, J., & Varela, J. (2006). Modelización con estructuras de covarianzas en ciencias sociales: Temas esenciales, avanzados y aportaciones especiales [Modeling with covariance structures in social sciences: Essential and advanced topics and special contributions] (1st ed.). Netbiblo.
  34. Li, C. H. (2016) Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior Research Methods, 48, 936–949. https://doi.org/10.3758/s13428-015-0619-7
  35. Liu, Z. (2022). The evolution of artificial intelligence and its collaboration with brain science. Highlights in Science, Engineering and Technology, 1, 31–39. https://doi.org/10.54097/hset.v1i.424
  36. Ma, N., Khynevych, R., Hao, Y., & Wang, Y. (2025). Effect of anthropomorphism and perceived intelligence in chatbot avatars of visual design on user experience: Accounting for perceived empathy and trust. Frontiers in Computer Science, 7. https://doi.org/10.3389/fcomp.2025.1531976
  37. Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human-human and human-automation trust: An integrative review. Theoretical Issues in Ergonomics Science, 8(4), 277–301. https://doi.org/10.1080/14639220500337708
  38. Meerkerk, G.-J., Van Den Eijnden, R. J. J. M., & Garretsen, H. F. L. (2006a). Predicting compulsive Internet use: It’s all about sex! CyberPsychology & Behavior, 9(1), 95–103. https://doi.org/10.1089/cpb.2006.9.95
  39. Meerkerk, G.-J., Van Den Eijnden, R. J. J. M., Vermulst, A. A., & Garretsen, H. F. L. (2006b). The compulsive Internet use scale (CIUS): some psychometric properties. CyberPsychology & Behavior, 12(1), 1–6. https://doi.org/10.1089/cpb.2008.0181
  40. Morales-García, W., Sairitupa-Sanchez, L., Morales-García, S. B., & Morales-García, M. (2024). Development and validation of a scale for dependence on artificial intelligence in university students. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1323898
  41. Okello, H. T. (2023). Analyzing the impacts of artificial intelligence on education. IAA Journal of Education, 9(3), 8–13. https://doi.org/10.59298/IAAJE/2023/2.10.1000
  42. Poulton, A., & Hester, R. (2019). Transition to substance use disorders: Impulsivity for reward and learning from reward. Social Cognitive and Affective Neuroscience, 15, 1182–1191. https://doi.org/10.1093/scan/nsz077
  43. Riedl, M. O. (2019). Human-centered artificial intelligence and machine learning. Human Behavior and Emerging Technologies, 1, 33–36. https://doi.org/10.1002/hbe2.117
  44. Rietveld, T., & van Hout, R. (1993). Statistical techniques for the study of language and language behaviour. De Gruyter Mouton. https://doi.org/10.1515/9783110871609
  45. Robson, C., & McCartan, K. (2016). Real world research (4th Ed.). John Wiley & Sons.
  46. Salvi, R., & Singh, R. (2023). Artificial intelligence and human society. International Journal of Social Science and Human Research, 6(9), 5441–5445. https://doi.org/10.47191/ijsshr/v6-i9-13
  47. Sayyad, W., Mali, D., & Mistry, M. (2020). Smartphone usage and its addiction among undergraduate nursing students. Indian Journal of Forensic Medicine & Toxicology, 14(4), 3838–3843. https://doi.org/10.37506/ijfmt.v14i4.12229
  48. Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, Article 100014. https://doi.org/10.1016/j.chbr.2020.100014
  49. Sinitaru, L. (2022). Addiction as a feeling of unfreedom. In Proceedings of the Materials of the National Scientific Conference with International Participation “Problems of Social and Human Sciences and Modernization of Education” (pp. 85–92). https://doi.org/10.46728/c.v1.25-03-2022.p85-92
  50. Sotero, L., Ferreira da Veiga, G., Carreira, D., Portugal, A., & Relvas, A. P. (2020). Adicción a Facebook y adultos emergentes: La influencia de variables sociodemográficas, comunicación familiar y diferenciación del self [Facebook addiction and emerging adults: The influence of sociodemographic variables, family communication, and self-differentiation]. Escritos de Psicología–Psychological Writings, 12(2), 81–92. https://doi.org/10.24310/espsiescpsi.v12i2.9986
  51. Steyvers, M., & Kumar, A. (2023). Three challenges for AI-assisted decision-making. Perspectives on Psychological Science, 19(5), 722–734. https://doi.org/10.1177/17456916231181102
  52. Suh, W., & Ahn, S. (2022). Development and validation of a scale measuring student attitudes toward artificial intelligence. Sage Open, 12(2). https://doi.org/10.1177/21582440221100463
  53. Trabelsi, Z., Alnajjar, F., Ambali, M. M., Gochoo, M., & Ali, L. (2023). Real-time attention monitoring system for classroom: A deep learning approach for student’s behavior recognition. Big Data and Cognitive Computing, 7(1), Article 48. https://doi.org/10.3390/bdcc7010048
  54. Velicer, W. F., & Fava, J. L. (1998). Affects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3(2), 231–251. https://doi.org/10.1037/1082-989X.3.2.231
  55. Vicente-Escudero, J. L., Saura-Garre, P., López-Soler, C., Martínez, A., & Alcántara, M. (2019). Mobile and internet addiction in adolescents and their relationship with psychopathological problems and protective variables. Escritos de Psicología, 12(2), 103–112. https://doi.org/10.24310/espsiescpsi.v12i2.10065
  56. Vinichenko, M. V., Nikiporets-Takigawa, G. Y., Chulanova, O. L., & Ljapunova, N. V. (2021). Threats and risks from the digitalization of society and artificial intelligence: Views of generation Z students. International Journal of Advanced and Applied Sciences, 8(10), 108–115. https://doi.org/10.21833/ijaas.2021.10.012
  57. Wang, B., Patrick, P. L., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337. https://doi.org/10.1080/0144929X.2022.2072768
  58. Widyanto, L., & McMurran, M. (2004). The psychometric properties of the Internet addiction test. Cyber Psychology & Behavior, 7(4), 443–450. https://doi.org/10.1089/cpb.2004.7.443
  59. Xu, D. (2023). ChatGPT opens a new door for bioinformatics. Quantitative Biology (Beijing, China), 11, 204–206. https://doi.org/10.15302/j-qb-023-0328
  60. Yanai, H., & Ichikawa, M. (2006). Factor analysis. Handbook of Statistics, 26, 257–296. https://doi.org/10.1016/S0169-7161(06)26009-7
  61. Yankouskaya, A., Liebherr, M., & Ali, R. (2025). Can ChatGPT be addictive? A call to examine the shift from support to dependence in AI conversational large language models. Human-Centric Intelligent Systems, 5, 77–89. https://doi.org/10.1007/s44230-025-00090-w
  62. Zhang, S., Zhao, X., Zhou, T., & Kim, J. H. (2024). Do you have AI dependency? The roles of academic self-efficacy, academic stress, and performance expectations on problematic AI usage behavior. International Journal of Educational Technology in Higher Education, 21, Article 34. https://doi.org/10.1186/s41239-024-00467-0
  63. Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Red teaming ChatGPT via jailbreaking: Bias, robustness, reliability and toxicity. arXiv. https://doi.org/10.48550/arXiv.2301.12867